Low-resolution face recognition via Simultaneous Discriminant Analysis
Low resolution (LR) is an important issue when handling real world face recognition problems. The performance of traditional recognition algorithms will drop drastically due to the loss of facial texture information in original high resolution (HR) images. To address this problem, in this paper we p...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Changtao Zhou Zhiwei Zhang Dong Yi Zhen Lei Li, Stan Z. |
description | Low resolution (LR) is an important issue when handling real world face recognition problems. The performance of traditional recognition algorithms will drop drastically due to the loss of facial texture information in original high resolution (HR) images. To address this problem, in this paper we propose an effective approach named Simultaneous Discriminant Analysis (SDA). SDA learns two map- pings from LR and HR images respectively to a common subspace where discrimination property is maximized. In SDA, (1) the data gap between LR and HR is reduced by mapping into a common space; and (2) the mapping is de- signed for preserving most discriminative information. After that, the conventional classification method is applied in the common space for final decision. Extensive experiments are conducted on both FERET and Multi-PIE, and the results clearly show the superiority of the proposed SDA over state-of-the-art methods. |
doi_str_mv | 10.1109/IJCB.2011.6117595 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6117595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6117595</ieee_id><sourcerecordid>6117595</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1335-2f570ae3a655833879efc390bdbfae42a2c66c256ec7a0cf0524c5f19147e31a3</originalsourceid><addsrcrecordid>eNpFj8FOwzAQRI0QElD6AYhLfiDBa8d2fCyBQlEkDsC52po1MkptFCeg_j0VVGIuo3mH0Qxjl8ArAG6vV4_tTSU4QKUBjLLqiJ1DrYwBqWx9_B8afcrmOX_wvbRuGhBnbNml73KgnPppDCkWHh0VA7n0HsMv-ApYPIft1I8YKU25uA3ZDWEbIsaxWETsdznkC3bisc80P_iMvS7vXtqHsnu6X7WLrgwgpSqFV4YjSdRKNVI2xpJ30vLN28Yj1QKF09oJpckZ5M5zJWqnPFioDUlAOWNXf72BiNaf-x047NaH3_IHl4hMnw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low-resolution face recognition via Simultaneous Discriminant Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Changtao Zhou ; Zhiwei Zhang ; Dong Yi ; Zhen Lei ; Li, Stan Z.</creator><creatorcontrib>Changtao Zhou ; Zhiwei Zhang ; Dong Yi ; Zhen Lei ; Li, Stan Z.</creatorcontrib><description>Low resolution (LR) is an important issue when handling real world face recognition problems. The performance of traditional recognition algorithms will drop drastically due to the loss of facial texture information in original high resolution (HR) images. To address this problem, in this paper we propose an effective approach named Simultaneous Discriminant Analysis (SDA). SDA learns two map- pings from LR and HR images respectively to a common subspace where discrimination property is maximized. In SDA, (1) the data gap between LR and HR is reduced by mapping into a common space; and (2) the mapping is de- signed for preserving most discriminative information. After that, the conventional classification method is applied in the common space for final decision. Extensive experiments are conducted on both FERET and Multi-PIE, and the results clearly show the superiority of the proposed SDA over state-of-the-art methods.</description><identifier>ISBN: 1457713586</identifier><identifier>ISBN: 9781457713583</identifier><identifier>EISBN: 1457713594</identifier><identifier>EISBN: 1457713578</identifier><identifier>EISBN: 9781457713576</identifier><identifier>EISBN: 9781457713590</identifier><identifier>DOI: 10.1109/IJCB.2011.6117595</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image resolution</subject><ispartof>2011 International Joint Conference on Biometrics (IJCB), 2011, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6117595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6117595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Changtao Zhou</creatorcontrib><creatorcontrib>Zhiwei Zhang</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><title>Low-resolution face recognition via Simultaneous Discriminant Analysis</title><title>2011 International Joint Conference on Biometrics (IJCB)</title><addtitle>IJCB</addtitle><description>Low resolution (LR) is an important issue when handling real world face recognition problems. The performance of traditional recognition algorithms will drop drastically due to the loss of facial texture information in original high resolution (HR) images. To address this problem, in this paper we propose an effective approach named Simultaneous Discriminant Analysis (SDA). SDA learns two map- pings from LR and HR images respectively to a common subspace where discrimination property is maximized. In SDA, (1) the data gap between LR and HR is reduced by mapping into a common space; and (2) the mapping is de- signed for preserving most discriminative information. After that, the conventional classification method is applied in the common space for final decision. Extensive experiments are conducted on both FERET and Multi-PIE, and the results clearly show the superiority of the proposed SDA over state-of-the-art methods.</description><subject>Image resolution</subject><isbn>1457713586</isbn><isbn>9781457713583</isbn><isbn>1457713594</isbn><isbn>1457713578</isbn><isbn>9781457713576</isbn><isbn>9781457713590</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj8FOwzAQRI0QElD6AYhLfiDBa8d2fCyBQlEkDsC52po1MkptFCeg_j0VVGIuo3mH0Qxjl8ArAG6vV4_tTSU4QKUBjLLqiJ1DrYwBqWx9_B8afcrmOX_wvbRuGhBnbNml73KgnPppDCkWHh0VA7n0HsMv-ApYPIft1I8YKU25uA3ZDWEbIsaxWETsdznkC3bisc80P_iMvS7vXtqHsnu6X7WLrgwgpSqFV4YjSdRKNVI2xpJ30vLN28Yj1QKF09oJpckZ5M5zJWqnPFioDUlAOWNXf72BiNaf-x047NaH3_IHl4hMnw</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Changtao Zhou</creator><creator>Zhiwei Zhang</creator><creator>Dong Yi</creator><creator>Zhen Lei</creator><creator>Li, Stan Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Low-resolution face recognition via Simultaneous Discriminant Analysis</title><author>Changtao Zhou ; Zhiwei Zhang ; Dong Yi ; Zhen Lei ; Li, Stan Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1335-2f570ae3a655833879efc390bdbfae42a2c66c256ec7a0cf0524c5f19147e31a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Image resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Changtao Zhou</creatorcontrib><creatorcontrib>Zhiwei Zhang</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changtao Zhou</au><au>Zhiwei Zhang</au><au>Dong Yi</au><au>Zhen Lei</au><au>Li, Stan Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low-resolution face recognition via Simultaneous Discriminant Analysis</atitle><btitle>2011 International Joint Conference on Biometrics (IJCB)</btitle><stitle>IJCB</stitle><date>2011-10</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1457713586</isbn><isbn>9781457713583</isbn><eisbn>1457713594</eisbn><eisbn>1457713578</eisbn><eisbn>9781457713576</eisbn><eisbn>9781457713590</eisbn><abstract>Low resolution (LR) is an important issue when handling real world face recognition problems. The performance of traditional recognition algorithms will drop drastically due to the loss of facial texture information in original high resolution (HR) images. To address this problem, in this paper we propose an effective approach named Simultaneous Discriminant Analysis (SDA). SDA learns two map- pings from LR and HR images respectively to a common subspace where discrimination property is maximized. In SDA, (1) the data gap between LR and HR is reduced by mapping into a common space; and (2) the mapping is de- signed for preserving most discriminative information. After that, the conventional classification method is applied in the common space for final decision. Extensive experiments are conducted on both FERET and Multi-PIE, and the results clearly show the superiority of the proposed SDA over state-of-the-art methods.</abstract><pub>IEEE</pub><doi>10.1109/IJCB.2011.6117595</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457713586 |
ispartof | 2011 International Joint Conference on Biometrics (IJCB), 2011, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6117595 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Image resolution |
title | Low-resolution face recognition via Simultaneous Discriminant Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low-resolution%20face%20recognition%20via%20Simultaneous%20Discriminant%20Analysis&rft.btitle=2011%20International%20Joint%20Conference%20on%20Biometrics%20(IJCB)&rft.au=Changtao%20Zhou&rft.date=2011-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1457713586&rft.isbn_list=9781457713583&rft_id=info:doi/10.1109/IJCB.2011.6117595&rft_dat=%3Cieee_6IE%3E6117595%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457713594&rft.eisbn_list=1457713578&rft.eisbn_list=9781457713576&rft.eisbn_list=9781457713590&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6117595&rfr_iscdi=true |