Low-resolution face recognition via Simultaneous Discriminant Analysis

Low resolution (LR) is an important issue when handling real world face recognition problems. The performance of traditional recognition algorithms will drop drastically due to the loss of facial texture information in original high resolution (HR) images. To address this problem, in this paper we p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Changtao Zhou, Zhiwei Zhang, Dong Yi, Zhen Lei, Li, Stan Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Changtao Zhou
Zhiwei Zhang
Dong Yi
Zhen Lei
Li, Stan Z.
description Low resolution (LR) is an important issue when handling real world face recognition problems. The performance of traditional recognition algorithms will drop drastically due to the loss of facial texture information in original high resolution (HR) images. To address this problem, in this paper we propose an effective approach named Simultaneous Discriminant Analysis (SDA). SDA learns two map- pings from LR and HR images respectively to a common subspace where discrimination property is maximized. In SDA, (1) the data gap between LR and HR is reduced by mapping into a common space; and (2) the mapping is de- signed for preserving most discriminative information. After that, the conventional classification method is applied in the common space for final decision. Extensive experiments are conducted on both FERET and Multi-PIE, and the results clearly show the superiority of the proposed SDA over state-of-the-art methods.
doi_str_mv 10.1109/IJCB.2011.6117595
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6117595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6117595</ieee_id><sourcerecordid>6117595</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1335-2f570ae3a655833879efc390bdbfae42a2c66c256ec7a0cf0524c5f19147e31a3</originalsourceid><addsrcrecordid>eNpFj8FOwzAQRI0QElD6AYhLfiDBa8d2fCyBQlEkDsC52po1MkptFCeg_j0VVGIuo3mH0Qxjl8ArAG6vV4_tTSU4QKUBjLLqiJ1DrYwBqWx9_B8afcrmOX_wvbRuGhBnbNml73KgnPppDCkWHh0VA7n0HsMv-ApYPIft1I8YKU25uA3ZDWEbIsaxWETsdznkC3bisc80P_iMvS7vXtqHsnu6X7WLrgwgpSqFV4YjSdRKNVI2xpJ30vLN28Yj1QKF09oJpckZ5M5zJWqnPFioDUlAOWNXf72BiNaf-x047NaH3_IHl4hMnw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low-resolution face recognition via Simultaneous Discriminant Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Changtao Zhou ; Zhiwei Zhang ; Dong Yi ; Zhen Lei ; Li, Stan Z.</creator><creatorcontrib>Changtao Zhou ; Zhiwei Zhang ; Dong Yi ; Zhen Lei ; Li, Stan Z.</creatorcontrib><description>Low resolution (LR) is an important issue when handling real world face recognition problems. The performance of traditional recognition algorithms will drop drastically due to the loss of facial texture information in original high resolution (HR) images. To address this problem, in this paper we propose an effective approach named Simultaneous Discriminant Analysis (SDA). SDA learns two map- pings from LR and HR images respectively to a common subspace where discrimination property is maximized. In SDA, (1) the data gap between LR and HR is reduced by mapping into a common space; and (2) the mapping is de- signed for preserving most discriminative information. After that, the conventional classification method is applied in the common space for final decision. Extensive experiments are conducted on both FERET and Multi-PIE, and the results clearly show the superiority of the proposed SDA over state-of-the-art methods.</description><identifier>ISBN: 1457713586</identifier><identifier>ISBN: 9781457713583</identifier><identifier>EISBN: 1457713594</identifier><identifier>EISBN: 1457713578</identifier><identifier>EISBN: 9781457713576</identifier><identifier>EISBN: 9781457713590</identifier><identifier>DOI: 10.1109/IJCB.2011.6117595</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image resolution</subject><ispartof>2011 International Joint Conference on Biometrics (IJCB), 2011, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6117595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6117595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Changtao Zhou</creatorcontrib><creatorcontrib>Zhiwei Zhang</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><title>Low-resolution face recognition via Simultaneous Discriminant Analysis</title><title>2011 International Joint Conference on Biometrics (IJCB)</title><addtitle>IJCB</addtitle><description>Low resolution (LR) is an important issue when handling real world face recognition problems. The performance of traditional recognition algorithms will drop drastically due to the loss of facial texture information in original high resolution (HR) images. To address this problem, in this paper we propose an effective approach named Simultaneous Discriminant Analysis (SDA). SDA learns two map- pings from LR and HR images respectively to a common subspace where discrimination property is maximized. In SDA, (1) the data gap between LR and HR is reduced by mapping into a common space; and (2) the mapping is de- signed for preserving most discriminative information. After that, the conventional classification method is applied in the common space for final decision. Extensive experiments are conducted on both FERET and Multi-PIE, and the results clearly show the superiority of the proposed SDA over state-of-the-art methods.</description><subject>Image resolution</subject><isbn>1457713586</isbn><isbn>9781457713583</isbn><isbn>1457713594</isbn><isbn>1457713578</isbn><isbn>9781457713576</isbn><isbn>9781457713590</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj8FOwzAQRI0QElD6AYhLfiDBa8d2fCyBQlEkDsC52po1MkptFCeg_j0VVGIuo3mH0Qxjl8ArAG6vV4_tTSU4QKUBjLLqiJ1DrYwBqWx9_B8afcrmOX_wvbRuGhBnbNml73KgnPppDCkWHh0VA7n0HsMv-ApYPIft1I8YKU25uA3ZDWEbIsaxWETsdznkC3bisc80P_iMvS7vXtqHsnu6X7WLrgwgpSqFV4YjSdRKNVI2xpJ30vLN28Yj1QKF09oJpckZ5M5zJWqnPFioDUlAOWNXf72BiNaf-x047NaH3_IHl4hMnw</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Changtao Zhou</creator><creator>Zhiwei Zhang</creator><creator>Dong Yi</creator><creator>Zhen Lei</creator><creator>Li, Stan Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Low-resolution face recognition via Simultaneous Discriminant Analysis</title><author>Changtao Zhou ; Zhiwei Zhang ; Dong Yi ; Zhen Lei ; Li, Stan Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1335-2f570ae3a655833879efc390bdbfae42a2c66c256ec7a0cf0524c5f19147e31a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Image resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Changtao Zhou</creatorcontrib><creatorcontrib>Zhiwei Zhang</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changtao Zhou</au><au>Zhiwei Zhang</au><au>Dong Yi</au><au>Zhen Lei</au><au>Li, Stan Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low-resolution face recognition via Simultaneous Discriminant Analysis</atitle><btitle>2011 International Joint Conference on Biometrics (IJCB)</btitle><stitle>IJCB</stitle><date>2011-10</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1457713586</isbn><isbn>9781457713583</isbn><eisbn>1457713594</eisbn><eisbn>1457713578</eisbn><eisbn>9781457713576</eisbn><eisbn>9781457713590</eisbn><abstract>Low resolution (LR) is an important issue when handling real world face recognition problems. The performance of traditional recognition algorithms will drop drastically due to the loss of facial texture information in original high resolution (HR) images. To address this problem, in this paper we propose an effective approach named Simultaneous Discriminant Analysis (SDA). SDA learns two map- pings from LR and HR images respectively to a common subspace where discrimination property is maximized. In SDA, (1) the data gap between LR and HR is reduced by mapping into a common space; and (2) the mapping is de- signed for preserving most discriminative information. After that, the conventional classification method is applied in the common space for final decision. Extensive experiments are conducted on both FERET and Multi-PIE, and the results clearly show the superiority of the proposed SDA over state-of-the-art methods.</abstract><pub>IEEE</pub><doi>10.1109/IJCB.2011.6117595</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457713586
ispartof 2011 International Joint Conference on Biometrics (IJCB), 2011, p.1-6
issn
language eng
recordid cdi_ieee_primary_6117595
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Image resolution
title Low-resolution face recognition via Simultaneous Discriminant Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low-resolution%20face%20recognition%20via%20Simultaneous%20Discriminant%20Analysis&rft.btitle=2011%20International%20Joint%20Conference%20on%20Biometrics%20(IJCB)&rft.au=Changtao%20Zhou&rft.date=2011-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1457713586&rft.isbn_list=9781457713583&rft_id=info:doi/10.1109/IJCB.2011.6117595&rft_dat=%3Cieee_6IE%3E6117595%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457713594&rft.eisbn_list=1457713578&rft.eisbn_list=9781457713576&rft.eisbn_list=9781457713590&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6117595&rfr_iscdi=true