Recognizing 3D objects in cluttered scenes using projection images
This paper presents a novel descriptor for recognizing objects in highly occluded and cluttered 2.5D scenes produced by range scans. This new compact regional shape descriptor, called "projection images", is designed to be robust against noise, partial occlusion and clutter. Projection ima...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 676 |
---|---|
container_issue | |
container_start_page | 673 |
container_title | |
container_volume | |
creator | Zarpalas, Dimitris Kordelas, Georgios Daras, Petros |
description | This paper presents a novel descriptor for recognizing objects in highly occluded and cluttered 2.5D scenes produced by range scans. This new compact regional shape descriptor, called "projection images", is designed to be robust against noise, partial occlusion and clutter. Projection images are formed by "projections" of points onto the plane centered at the basis point which is perpendicular to the viewing axis. Multiple experiments were performed on a dataset of 50 range scans, each one comprised of multiple objects, which proved that the proposed method is robust and efficient to a satisfactory degree of occlusion and clutter, while it compared favor- ably against descriptors previously introduced in the literature. |
doi_str_mv | 10.1109/ICIP.2011.6116642 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6116642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6116642</ieee_id><sourcerecordid>6116642</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6efff7d4a4100bea7426029bb462ef442684d0163abf6f9eaad4d3a903f22e9b3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1LIi39AMTGP5Diazt-LCG8IlUCIVhXdnIduSpJFacL-HpSUVaj0RzNSEPINbAlALO3VVm9LTkDWCoApSQ_IQurDchCaxBMiFOScWEgN4W0Z2T2H0h9TjIoOM-lMeySzFLaMDYVCcjI_TvWfdvFn9i1VDzQ3m-wHhONHa23-3HEARuaauww0X06QLuhPyCx72j8ci2mK3IR3Dbh4qhz8vn0-FG-5KvX56q8W-URdDHmCkMIupFOAmMenZZcMW69l4pjkJMzsmGghPNBBYvONbIRzjIROEfrxZzc_PVGRFzvhml9-F4fvxC_EmhOpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recognizing 3D objects in cluttered scenes using projection images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zarpalas, Dimitris ; Kordelas, Georgios ; Daras, Petros</creator><creatorcontrib>Zarpalas, Dimitris ; Kordelas, Georgios ; Daras, Petros</creatorcontrib><description>This paper presents a novel descriptor for recognizing objects in highly occluded and cluttered 2.5D scenes produced by range scans. This new compact regional shape descriptor, called "projection images", is designed to be robust against noise, partial occlusion and clutter. Projection images are formed by "projections" of points onto the plane centered at the basis point which is perpendicular to the viewing axis. Multiple experiments were performed on a dataset of 50 range scans, each one comprised of multiple objects, which proved that the proposed method is robust and efficient to a satisfactory degree of occlusion and clutter, while it compared favor- ably against descriptors previously introduced in the literature.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1457713047</identifier><identifier>ISBN: 9781457713040</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781457713033</identifier><identifier>EISBN: 1457713020</identifier><identifier>EISBN: 1457713039</identifier><identifier>EISBN: 9781457713026</identifier><identifier>DOI: 10.1109/ICIP.2011.6116642</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clutter ; Conferences ; feature extraction ; Image recognition ; local shape descriptor ; Object recognition ; Projection Image ; range scan ; Shape ; Tensile stress ; Three dimensional displays</subject><ispartof>2011 18th IEEE International Conference on Image Processing, 2011, p.673-676</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6116642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6116642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zarpalas, Dimitris</creatorcontrib><creatorcontrib>Kordelas, Georgios</creatorcontrib><creatorcontrib>Daras, Petros</creatorcontrib><title>Recognizing 3D objects in cluttered scenes using projection images</title><title>2011 18th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>This paper presents a novel descriptor for recognizing objects in highly occluded and cluttered 2.5D scenes produced by range scans. This new compact regional shape descriptor, called "projection images", is designed to be robust against noise, partial occlusion and clutter. Projection images are formed by "projections" of points onto the plane centered at the basis point which is perpendicular to the viewing axis. Multiple experiments were performed on a dataset of 50 range scans, each one comprised of multiple objects, which proved that the proposed method is robust and efficient to a satisfactory degree of occlusion and clutter, while it compared favor- ably against descriptors previously introduced in the literature.</description><subject>Clutter</subject><subject>Conferences</subject><subject>feature extraction</subject><subject>Image recognition</subject><subject>local shape descriptor</subject><subject>Object recognition</subject><subject>Projection Image</subject><subject>range scan</subject><subject>Shape</subject><subject>Tensile stress</subject><subject>Three dimensional displays</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1457713047</isbn><isbn>9781457713040</isbn><isbn>9781457713033</isbn><isbn>1457713020</isbn><isbn>1457713039</isbn><isbn>9781457713026</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1LIi39AMTGP5Diazt-LCG8IlUCIVhXdnIduSpJFacL-HpSUVaj0RzNSEPINbAlALO3VVm9LTkDWCoApSQ_IQurDchCaxBMiFOScWEgN4W0Z2T2H0h9TjIoOM-lMeySzFLaMDYVCcjI_TvWfdvFn9i1VDzQ3m-wHhONHa23-3HEARuaauww0X06QLuhPyCx72j8ci2mK3IR3Dbh4qhz8vn0-FG-5KvX56q8W-URdDHmCkMIupFOAmMenZZcMW69l4pjkJMzsmGghPNBBYvONbIRzjIROEfrxZzc_PVGRFzvhml9-F4fvxC_EmhOpQ</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Zarpalas, Dimitris</creator><creator>Kordelas, Georgios</creator><creator>Daras, Petros</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>Recognizing 3D objects in cluttered scenes using projection images</title><author>Zarpalas, Dimitris ; Kordelas, Georgios ; Daras, Petros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6efff7d4a4100bea7426029bb462ef442684d0163abf6f9eaad4d3a903f22e9b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Clutter</topic><topic>Conferences</topic><topic>feature extraction</topic><topic>Image recognition</topic><topic>local shape descriptor</topic><topic>Object recognition</topic><topic>Projection Image</topic><topic>range scan</topic><topic>Shape</topic><topic>Tensile stress</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Zarpalas, Dimitris</creatorcontrib><creatorcontrib>Kordelas, Georgios</creatorcontrib><creatorcontrib>Daras, Petros</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zarpalas, Dimitris</au><au>Kordelas, Georgios</au><au>Daras, Petros</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognizing 3D objects in cluttered scenes using projection images</atitle><btitle>2011 18th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2011-09</date><risdate>2011</risdate><spage>673</spage><epage>676</epage><pages>673-676</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1457713047</isbn><isbn>9781457713040</isbn><eisbn>9781457713033</eisbn><eisbn>1457713020</eisbn><eisbn>1457713039</eisbn><eisbn>9781457713026</eisbn><abstract>This paper presents a novel descriptor for recognizing objects in highly occluded and cluttered 2.5D scenes produced by range scans. This new compact regional shape descriptor, called "projection images", is designed to be robust against noise, partial occlusion and clutter. Projection images are formed by "projections" of points onto the plane centered at the basis point which is perpendicular to the viewing axis. Multiple experiments were performed on a dataset of 50 range scans, each one comprised of multiple objects, which proved that the proposed method is robust and efficient to a satisfactory degree of occlusion and clutter, while it compared favor- ably against descriptors previously introduced in the literature.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2011.6116642</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2011 18th IEEE International Conference on Image Processing, 2011, p.673-676 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_6116642 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clutter Conferences feature extraction Image recognition local shape descriptor Object recognition Projection Image range scan Shape Tensile stress Three dimensional displays |
title | Recognizing 3D objects in cluttered scenes using projection images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognizing%203D%20objects%20in%20cluttered%20scenes%20using%20projection%20images&rft.btitle=2011%2018th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Zarpalas,%20Dimitris&rft.date=2011-09&rft.spage=673&rft.epage=676&rft.pages=673-676&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1457713047&rft.isbn_list=9781457713040&rft_id=info:doi/10.1109/ICIP.2011.6116642&rft_dat=%3Cieee_6IE%3E6116642%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457713033&rft.eisbn_list=1457713020&rft.eisbn_list=1457713039&rft.eisbn_list=9781457713026&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6116642&rfr_iscdi=true |