Recognizing 3D objects in cluttered scenes using projection images

This paper presents a novel descriptor for recognizing objects in highly occluded and cluttered 2.5D scenes produced by range scans. This new compact regional shape descriptor, called "projection images", is designed to be robust against noise, partial occlusion and clutter. Projection ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zarpalas, Dimitris, Kordelas, Georgios, Daras, Petros
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 676
container_issue
container_start_page 673
container_title
container_volume
creator Zarpalas, Dimitris
Kordelas, Georgios
Daras, Petros
description This paper presents a novel descriptor for recognizing objects in highly occluded and cluttered 2.5D scenes produced by range scans. This new compact regional shape descriptor, called "projection images", is designed to be robust against noise, partial occlusion and clutter. Projection images are formed by "projections" of points onto the plane centered at the basis point which is perpendicular to the viewing axis. Multiple experiments were performed on a dataset of 50 range scans, each one comprised of multiple objects, which proved that the proposed method is robust and efficient to a satisfactory degree of occlusion and clutter, while it compared favor- ably against descriptors previously introduced in the literature.
doi_str_mv 10.1109/ICIP.2011.6116642
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6116642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6116642</ieee_id><sourcerecordid>6116642</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6efff7d4a4100bea7426029bb462ef442684d0163abf6f9eaad4d3a903f22e9b3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1LIi39AMTGP5Diazt-LCG8IlUCIVhXdnIduSpJFacL-HpSUVaj0RzNSEPINbAlALO3VVm9LTkDWCoApSQ_IQurDchCaxBMiFOScWEgN4W0Z2T2H0h9TjIoOM-lMeySzFLaMDYVCcjI_TvWfdvFn9i1VDzQ3m-wHhONHa23-3HEARuaauww0X06QLuhPyCx72j8ci2mK3IR3Dbh4qhz8vn0-FG-5KvX56q8W-URdDHmCkMIupFOAmMenZZcMW69l4pjkJMzsmGghPNBBYvONbIRzjIROEfrxZzc_PVGRFzvhml9-F4fvxC_EmhOpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recognizing 3D objects in cluttered scenes using projection images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zarpalas, Dimitris ; Kordelas, Georgios ; Daras, Petros</creator><creatorcontrib>Zarpalas, Dimitris ; Kordelas, Georgios ; Daras, Petros</creatorcontrib><description>This paper presents a novel descriptor for recognizing objects in highly occluded and cluttered 2.5D scenes produced by range scans. This new compact regional shape descriptor, called "projection images", is designed to be robust against noise, partial occlusion and clutter. Projection images are formed by "projections" of points onto the plane centered at the basis point which is perpendicular to the viewing axis. Multiple experiments were performed on a dataset of 50 range scans, each one comprised of multiple objects, which proved that the proposed method is robust and efficient to a satisfactory degree of occlusion and clutter, while it compared favor- ably against descriptors previously introduced in the literature.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1457713047</identifier><identifier>ISBN: 9781457713040</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781457713033</identifier><identifier>EISBN: 1457713020</identifier><identifier>EISBN: 1457713039</identifier><identifier>EISBN: 9781457713026</identifier><identifier>DOI: 10.1109/ICIP.2011.6116642</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clutter ; Conferences ; feature extraction ; Image recognition ; local shape descriptor ; Object recognition ; Projection Image ; range scan ; Shape ; Tensile stress ; Three dimensional displays</subject><ispartof>2011 18th IEEE International Conference on Image Processing, 2011, p.673-676</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6116642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6116642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zarpalas, Dimitris</creatorcontrib><creatorcontrib>Kordelas, Georgios</creatorcontrib><creatorcontrib>Daras, Petros</creatorcontrib><title>Recognizing 3D objects in cluttered scenes using projection images</title><title>2011 18th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>This paper presents a novel descriptor for recognizing objects in highly occluded and cluttered 2.5D scenes produced by range scans. This new compact regional shape descriptor, called "projection images", is designed to be robust against noise, partial occlusion and clutter. Projection images are formed by "projections" of points onto the plane centered at the basis point which is perpendicular to the viewing axis. Multiple experiments were performed on a dataset of 50 range scans, each one comprised of multiple objects, which proved that the proposed method is robust and efficient to a satisfactory degree of occlusion and clutter, while it compared favor- ably against descriptors previously introduced in the literature.</description><subject>Clutter</subject><subject>Conferences</subject><subject>feature extraction</subject><subject>Image recognition</subject><subject>local shape descriptor</subject><subject>Object recognition</subject><subject>Projection Image</subject><subject>range scan</subject><subject>Shape</subject><subject>Tensile stress</subject><subject>Three dimensional displays</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1457713047</isbn><isbn>9781457713040</isbn><isbn>9781457713033</isbn><isbn>1457713020</isbn><isbn>1457713039</isbn><isbn>9781457713026</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1LIi39AMTGP5Diazt-LCG8IlUCIVhXdnIduSpJFacL-HpSUVaj0RzNSEPINbAlALO3VVm9LTkDWCoApSQ_IQurDchCaxBMiFOScWEgN4W0Z2T2H0h9TjIoOM-lMeySzFLaMDYVCcjI_TvWfdvFn9i1VDzQ3m-wHhONHa23-3HEARuaauww0X06QLuhPyCx72j8ci2mK3IR3Dbh4qhz8vn0-FG-5KvX56q8W-URdDHmCkMIupFOAmMenZZcMW69l4pjkJMzsmGghPNBBYvONbIRzjIROEfrxZzc_PVGRFzvhml9-F4fvxC_EmhOpQ</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Zarpalas, Dimitris</creator><creator>Kordelas, Georgios</creator><creator>Daras, Petros</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>Recognizing 3D objects in cluttered scenes using projection images</title><author>Zarpalas, Dimitris ; Kordelas, Georgios ; Daras, Petros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6efff7d4a4100bea7426029bb462ef442684d0163abf6f9eaad4d3a903f22e9b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Clutter</topic><topic>Conferences</topic><topic>feature extraction</topic><topic>Image recognition</topic><topic>local shape descriptor</topic><topic>Object recognition</topic><topic>Projection Image</topic><topic>range scan</topic><topic>Shape</topic><topic>Tensile stress</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Zarpalas, Dimitris</creatorcontrib><creatorcontrib>Kordelas, Georgios</creatorcontrib><creatorcontrib>Daras, Petros</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zarpalas, Dimitris</au><au>Kordelas, Georgios</au><au>Daras, Petros</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognizing 3D objects in cluttered scenes using projection images</atitle><btitle>2011 18th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2011-09</date><risdate>2011</risdate><spage>673</spage><epage>676</epage><pages>673-676</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1457713047</isbn><isbn>9781457713040</isbn><eisbn>9781457713033</eisbn><eisbn>1457713020</eisbn><eisbn>1457713039</eisbn><eisbn>9781457713026</eisbn><abstract>This paper presents a novel descriptor for recognizing objects in highly occluded and cluttered 2.5D scenes produced by range scans. This new compact regional shape descriptor, called "projection images", is designed to be robust against noise, partial occlusion and clutter. Projection images are formed by "projections" of points onto the plane centered at the basis point which is perpendicular to the viewing axis. Multiple experiments were performed on a dataset of 50 range scans, each one comprised of multiple objects, which proved that the proposed method is robust and efficient to a satisfactory degree of occlusion and clutter, while it compared favor- ably against descriptors previously introduced in the literature.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2011.6116642</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2011 18th IEEE International Conference on Image Processing, 2011, p.673-676
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_6116642
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clutter
Conferences
feature extraction
Image recognition
local shape descriptor
Object recognition
Projection Image
range scan
Shape
Tensile stress
Three dimensional displays
title Recognizing 3D objects in cluttered scenes using projection images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognizing%203D%20objects%20in%20cluttered%20scenes%20using%20projection%20images&rft.btitle=2011%2018th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Zarpalas,%20Dimitris&rft.date=2011-09&rft.spage=673&rft.epage=676&rft.pages=673-676&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1457713047&rft.isbn_list=9781457713040&rft_id=info:doi/10.1109/ICIP.2011.6116642&rft_dat=%3Cieee_6IE%3E6116642%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457713033&rft.eisbn_list=1457713020&rft.eisbn_list=1457713039&rft.eisbn_list=9781457713026&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6116642&rfr_iscdi=true