Single image local blur identification

We present a new approach for spatially varying blur identification using a single image. Within each local patch in the image, the local blur is selected between a finite set of candidate PSFs by a maximum likelihood approach. We propose to work with a Generalized Likelihood to reduce the number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Trouve, P., Champagnat, F., Le Besnerais, G., Idier, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new approach for spatially varying blur identification using a single image. Within each local patch in the image, the local blur is selected between a finite set of candidate PSFs by a maximum likelihood approach. We propose to work with a Generalized Likelihood to reduce the number of parameters and we use the Generalized Singular Value De- composition to limit the computing cost, while making proper image boundary hypotheses. The resulting method is fast and demonstrates good performance on simulated and real examples originating from applications such as motion blur identification and depth from defocus.
ISSN:1522-4880
2381-8549
DOI:10.1109/ICIP.2011.6116625