A novel coupled transmission-reflection tomography and the V-line Radon transform

This paper presents a novel tracker, based on combining a linear chain conditional random field (CRF) adaptive multi resolution segmentation with an unscented Kalman filter (UKF). Specifically, the proposed method combines multiple features and multiple resolutions to facilitate video tracking. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moayedi, F., Azimifar, Z., Fieguth, P., Kazemi, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue
container_start_page 413
container_title
container_volume
creator Moayedi, F.
Azimifar, Z.
Fieguth, P.
Kazemi, A.
description This paper presents a novel tracker, based on combining a linear chain conditional random field (CRF) adaptive multi resolution segmentation with an unscented Kalman filter (UKF). Specifically, the proposed method combines multiple features and multiple resolutions to facilitate video tracking. The advantages of our method lie in its speed and robust ness. Speed is dramatically improved by taking into account multiple resolutions in one dimensional CRF-based segmentation. Robustness is achieved by using multiple cues. The performance of the proposed method is demonstrated in human head tracking with a non-stationary camera. Results show that we are able to maintain real-time processing on quite generous video sequences. The paper argues that our approach is faster, more efficient and more robust than the conventional UKF.
doi_str_mv 10.1109/ICIP.2011.6116537
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6116537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6116537</ieee_id><sourcerecordid>6116537</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-a1441d84f8c333e807319e80100128b1cd6d88f78ea702bda0d366962068bd413</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1Loi39AMTGP-Byr69j3yyrikelSjwEbCs3dmhQHlUSkPr3pKKsZqSZOYsR4hphhgjp7XKxfJ5pQJxZRJuQOxHT1DGaxDkkIDoVI02MihOTnonxf2DcuRhhorUyzHApxl33BTCACEfiZS7r5ieWMmu-d2UMsm993VVF1xVNrdqYlzHrByv7pmo-W7_b7qWvh9o2yg9VFnWUrz4c8sMub9rqSlzkvuzi9KgT8X5_97Z4VKunh-VivlKFRu6VR2MwsMk5I6LI4AjTQRAANW8wCzYw546jd6A3wUMga1OrwfImGKSJuPnjFjHG9a4tKt_u18dr6Bd-vVMK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel coupled transmission-reflection tomography and the V-line Radon transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Moayedi, F. ; Azimifar, Z. ; Fieguth, P. ; Kazemi, A.</creator><creatorcontrib>Moayedi, F. ; Azimifar, Z. ; Fieguth, P. ; Kazemi, A.</creatorcontrib><description>This paper presents a novel tracker, based on combining a linear chain conditional random field (CRF) adaptive multi resolution segmentation with an unscented Kalman filter (UKF). Specifically, the proposed method combines multiple features and multiple resolutions to facilitate video tracking. The advantages of our method lie in its speed and robust ness. Speed is dramatically improved by taking into account multiple resolutions in one dimensional CRF-based segmentation. Robustness is achieved by using multiple cues. The performance of the proposed method is demonstrated in human head tracking with a non-stationary camera. Results show that we are able to maintain real-time processing on quite generous video sequences. The paper argues that our approach is faster, more efficient and more robust than the conventional UKF.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1457713047</identifier><identifier>ISBN: 9781457713040</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781457713033</identifier><identifier>EISBN: 1457713020</identifier><identifier>EISBN: 1457713039</identifier><identifier>EISBN: 9781457713026</identifier><identifier>DOI: 10.1109/ICIP.2011.6116537</identifier><language>eng</language><publisher>IEEE</publisher><subject>Detectors ; Image reconstruction ; Mathematical model ; Mirrors ; Radon transform ; reflection ; Tomography ; Transforms ; X-ray imaging</subject><ispartof>2011 18th IEEE International Conference on Image Processing, 2011, p.413-416</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6116537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6116537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moayedi, F.</creatorcontrib><creatorcontrib>Azimifar, Z.</creatorcontrib><creatorcontrib>Fieguth, P.</creatorcontrib><creatorcontrib>Kazemi, A.</creatorcontrib><title>A novel coupled transmission-reflection tomography and the V-line Radon transform</title><title>2011 18th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>This paper presents a novel tracker, based on combining a linear chain conditional random field (CRF) adaptive multi resolution segmentation with an unscented Kalman filter (UKF). Specifically, the proposed method combines multiple features and multiple resolutions to facilitate video tracking. The advantages of our method lie in its speed and robust ness. Speed is dramatically improved by taking into account multiple resolutions in one dimensional CRF-based segmentation. Robustness is achieved by using multiple cues. The performance of the proposed method is demonstrated in human head tracking with a non-stationary camera. Results show that we are able to maintain real-time processing on quite generous video sequences. The paper argues that our approach is faster, more efficient and more robust than the conventional UKF.</description><subject>Detectors</subject><subject>Image reconstruction</subject><subject>Mathematical model</subject><subject>Mirrors</subject><subject>Radon transform</subject><subject>reflection</subject><subject>Tomography</subject><subject>Transforms</subject><subject>X-ray imaging</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1457713047</isbn><isbn>9781457713040</isbn><isbn>9781457713033</isbn><isbn>1457713020</isbn><isbn>1457713039</isbn><isbn>9781457713026</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1Loi39AMTGP-Byr69j3yyrikelSjwEbCs3dmhQHlUSkPr3pKKsZqSZOYsR4hphhgjp7XKxfJ5pQJxZRJuQOxHT1DGaxDkkIDoVI02MihOTnonxf2DcuRhhorUyzHApxl33BTCACEfiZS7r5ieWMmu-d2UMsm993VVF1xVNrdqYlzHrByv7pmo-W7_b7qWvh9o2yg9VFnWUrz4c8sMub9rqSlzkvuzi9KgT8X5_97Z4VKunh-VivlKFRu6VR2MwsMk5I6LI4AjTQRAANW8wCzYw546jd6A3wUMga1OrwfImGKSJuPnjFjHG9a4tKt_u18dr6Bd-vVMK</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Moayedi, F.</creator><creator>Azimifar, Z.</creator><creator>Fieguth, P.</creator><creator>Kazemi, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>A novel coupled transmission-reflection tomography and the V-line Radon transform</title><author>Moayedi, F. ; Azimifar, Z. ; Fieguth, P. ; Kazemi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-a1441d84f8c333e807319e80100128b1cd6d88f78ea702bda0d366962068bd413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Detectors</topic><topic>Image reconstruction</topic><topic>Mathematical model</topic><topic>Mirrors</topic><topic>Radon transform</topic><topic>reflection</topic><topic>Tomography</topic><topic>Transforms</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Moayedi, F.</creatorcontrib><creatorcontrib>Azimifar, Z.</creatorcontrib><creatorcontrib>Fieguth, P.</creatorcontrib><creatorcontrib>Kazemi, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moayedi, F.</au><au>Azimifar, Z.</au><au>Fieguth, P.</au><au>Kazemi, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel coupled transmission-reflection tomography and the V-line Radon transform</atitle><btitle>2011 18th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2011-09</date><risdate>2011</risdate><spage>413</spage><epage>416</epage><pages>413-416</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1457713047</isbn><isbn>9781457713040</isbn><eisbn>9781457713033</eisbn><eisbn>1457713020</eisbn><eisbn>1457713039</eisbn><eisbn>9781457713026</eisbn><abstract>This paper presents a novel tracker, based on combining a linear chain conditional random field (CRF) adaptive multi resolution segmentation with an unscented Kalman filter (UKF). Specifically, the proposed method combines multiple features and multiple resolutions to facilitate video tracking. The advantages of our method lie in its speed and robust ness. Speed is dramatically improved by taking into account multiple resolutions in one dimensional CRF-based segmentation. Robustness is achieved by using multiple cues. The performance of the proposed method is demonstrated in human head tracking with a non-stationary camera. Results show that we are able to maintain real-time processing on quite generous video sequences. The paper argues that our approach is faster, more efficient and more robust than the conventional UKF.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2011.6116537</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2011 18th IEEE International Conference on Image Processing, 2011, p.413-416
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_6116537
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Detectors
Image reconstruction
Mathematical model
Mirrors
Radon transform
reflection
Tomography
Transforms
X-ray imaging
title A novel coupled transmission-reflection tomography and the V-line Radon transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20coupled%20transmission-reflection%20tomography%20and%20the%20V-line%20Radon%20transform&rft.btitle=2011%2018th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Moayedi,%20F.&rft.date=2011-09&rft.spage=413&rft.epage=416&rft.pages=413-416&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1457713047&rft.isbn_list=9781457713040&rft_id=info:doi/10.1109/ICIP.2011.6116537&rft_dat=%3Cieee_6IE%3E6116537%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457713033&rft.eisbn_list=1457713020&rft.eisbn_list=1457713039&rft.eisbn_list=9781457713026&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6116537&rfr_iscdi=true