Joint pose estimation and action recognition in image graphs

Human analysis in images and video is a hard problem due to the large variation in human pose, clothing, camera view-points, lighting and other factors. While the explicit modeling of this variability is difficult, the huge amount of available person images motivates for the implicit, data-driven ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Raja, K., Laptev, I., Perez, P., Oisel, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue
container_start_page 25
container_title
container_volume
creator Raja, K.
Laptev, I.
Perez, P.
Oisel, L.
description Human analysis in images and video is a hard problem due to the large variation in human pose, clothing, camera view-points, lighting and other factors. While the explicit modeling of this variability is difficult, the huge amount of available person images motivates for the implicit, data-driven approach to human analysis. In this work we aim to explore this approach using the large amount of images spanning a subspace of human appearance. We model this subspace by connecting images into a graph and propagating information through such a graph using a discriminatively-trained graphical model. We particularly address the problems of human pose estimation and action recognition and demonstrate how image graphs help solving these problems jointly. We report results on still images with human actions from the KTH dataset.
doi_str_mv 10.1109/ICIP.2011.6116197
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6116197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6116197</ieee_id><sourcerecordid>6116197</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-9357cbab06c9960833f4f1d74390b04155f259f210c500d05004a241859039373</originalsourceid><addsrcrecordid>eNo1UNtKxDAUjDewu-4HiC_9gdZzcpImAV-keKks6IM-L2ma1ojblqYv_r1lXWGYGRgYhmHsGiFHBHNbldVbzgExLxALNOqEbYzSKKRSSEB0yhJOGjMthTljq_9AqHOWoOQ8E1rDJVvF-AWwFBEm7O5lCP2cjkP0qY9z2Ns5DH1q-ya17mAn74auDwcfFuxt59NusuNnvGIXrf2OfnPUNft4fHgvn7Pt61NV3m-zwFHPmSGpXG1rKJwxBWiiVrTYKEEGahAoZculaTmCkwANLCQsF6ilATKkaM1u_nqD9343TsuG6Wd3fIF-AX__Sf8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Joint pose estimation and action recognition in image graphs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Raja, K. ; Laptev, I. ; Perez, P. ; Oisel, L.</creator><creatorcontrib>Raja, K. ; Laptev, I. ; Perez, P. ; Oisel, L.</creatorcontrib><description>Human analysis in images and video is a hard problem due to the large variation in human pose, clothing, camera view-points, lighting and other factors. While the explicit modeling of this variability is difficult, the huge amount of available person images motivates for the implicit, data-driven approach to human analysis. In this work we aim to explore this approach using the large amount of images spanning a subspace of human appearance. We model this subspace by connecting images into a graph and propagating information through such a graph using a discriminatively-trained graphical model. We particularly address the problems of human pose estimation and action recognition and demonstrate how image graphs help solving these problems jointly. We report results on still images with human actions from the KTH dataset.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1457713047</identifier><identifier>ISBN: 9781457713040</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781457713033</identifier><identifier>EISBN: 1457713020</identifier><identifier>EISBN: 1457713039</identifier><identifier>EISBN: 9781457713026</identifier><identifier>DOI: 10.1109/ICIP.2011.6116197</identifier><language>eng</language><publisher>IEEE</publisher><subject>Action Recognition in still images ; Conferences ; Estimation ; Graph optimization ; Graphical models ; Humans ; Image recognition ; Joints ; Pose estimation ; Training</subject><ispartof>2011 18th IEEE International Conference on Image Processing, 2011, p.25-28</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6116197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6116197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raja, K.</creatorcontrib><creatorcontrib>Laptev, I.</creatorcontrib><creatorcontrib>Perez, P.</creatorcontrib><creatorcontrib>Oisel, L.</creatorcontrib><title>Joint pose estimation and action recognition in image graphs</title><title>2011 18th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Human analysis in images and video is a hard problem due to the large variation in human pose, clothing, camera view-points, lighting and other factors. While the explicit modeling of this variability is difficult, the huge amount of available person images motivates for the implicit, data-driven approach to human analysis. In this work we aim to explore this approach using the large amount of images spanning a subspace of human appearance. We model this subspace by connecting images into a graph and propagating information through such a graph using a discriminatively-trained graphical model. We particularly address the problems of human pose estimation and action recognition and demonstrate how image graphs help solving these problems jointly. We report results on still images with human actions from the KTH dataset.</description><subject>Action Recognition in still images</subject><subject>Conferences</subject><subject>Estimation</subject><subject>Graph optimization</subject><subject>Graphical models</subject><subject>Humans</subject><subject>Image recognition</subject><subject>Joints</subject><subject>Pose estimation</subject><subject>Training</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1457713047</isbn><isbn>9781457713040</isbn><isbn>9781457713033</isbn><isbn>1457713020</isbn><isbn>1457713039</isbn><isbn>9781457713026</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKxDAUjDewu-4HiC_9gdZzcpImAV-keKks6IM-L2ma1ojblqYv_r1lXWGYGRgYhmHsGiFHBHNbldVbzgExLxALNOqEbYzSKKRSSEB0yhJOGjMthTljq_9AqHOWoOQ8E1rDJVvF-AWwFBEm7O5lCP2cjkP0qY9z2Ns5DH1q-ya17mAn74auDwcfFuxt59NusuNnvGIXrf2OfnPUNft4fHgvn7Pt61NV3m-zwFHPmSGpXG1rKJwxBWiiVrTYKEEGahAoZculaTmCkwANLCQsF6ilATKkaM1u_nqD9343TsuG6Wd3fIF-AX__Sf8</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Raja, K.</creator><creator>Laptev, I.</creator><creator>Perez, P.</creator><creator>Oisel, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>Joint pose estimation and action recognition in image graphs</title><author>Raja, K. ; Laptev, I. ; Perez, P. ; Oisel, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-9357cbab06c9960833f4f1d74390b04155f259f210c500d05004a241859039373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Action Recognition in still images</topic><topic>Conferences</topic><topic>Estimation</topic><topic>Graph optimization</topic><topic>Graphical models</topic><topic>Humans</topic><topic>Image recognition</topic><topic>Joints</topic><topic>Pose estimation</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Raja, K.</creatorcontrib><creatorcontrib>Laptev, I.</creatorcontrib><creatorcontrib>Perez, P.</creatorcontrib><creatorcontrib>Oisel, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raja, K.</au><au>Laptev, I.</au><au>Perez, P.</au><au>Oisel, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Joint pose estimation and action recognition in image graphs</atitle><btitle>2011 18th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>25</spage><epage>28</epage><pages>25-28</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1457713047</isbn><isbn>9781457713040</isbn><eisbn>9781457713033</eisbn><eisbn>1457713020</eisbn><eisbn>1457713039</eisbn><eisbn>9781457713026</eisbn><abstract>Human analysis in images and video is a hard problem due to the large variation in human pose, clothing, camera view-points, lighting and other factors. While the explicit modeling of this variability is difficult, the huge amount of available person images motivates for the implicit, data-driven approach to human analysis. In this work we aim to explore this approach using the large amount of images spanning a subspace of human appearance. We model this subspace by connecting images into a graph and propagating information through such a graph using a discriminatively-trained graphical model. We particularly address the problems of human pose estimation and action recognition and demonstrate how image graphs help solving these problems jointly. We report results on still images with human actions from the KTH dataset.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2011.6116197</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2011 18th IEEE International Conference on Image Processing, 2011, p.25-28
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_6116197
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Action Recognition in still images
Conferences
Estimation
Graph optimization
Graphical models
Humans
Image recognition
Joints
Pose estimation
Training
title Joint pose estimation and action recognition in image graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Joint%20pose%20estimation%20and%20action%20recognition%20in%20image%20graphs&rft.btitle=2011%2018th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Raja,%20K.&rft.date=2011-01-01&rft.spage=25&rft.epage=28&rft.pages=25-28&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1457713047&rft.isbn_list=9781457713040&rft_id=info:doi/10.1109/ICIP.2011.6116197&rft_dat=%3Cieee_6IE%3E6116197%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457713033&rft.eisbn_list=1457713020&rft.eisbn_list=1457713039&rft.eisbn_list=9781457713026&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6116197&rfr_iscdi=true