Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation

Vision-based egomotion estimation can be employed to endow with navigation ability an Unmanned Aerial Vehicle (UAV) that is equipped with an on-board camera. The egomotion estimation block computes the 3D UAV motion, taking as an input a 2D optical flow map that is constructed for each of the captur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Angelopoulou, M. E., Bouganis, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2360
container_issue
container_start_page 2357
container_title
container_volume
creator Angelopoulou, M. E.
Bouganis, C.
description Vision-based egomotion estimation can be employed to endow with navigation ability an Unmanned Aerial Vehicle (UAV) that is equipped with an on-board camera. The egomotion estimation block computes the 3D UAV motion, taking as an input a 2D optical flow map that is constructed for each of the captured video frames. This work considers sparse optical flow estimation, and thus the navigation system that is developed includes a feature selection unit, which initially identifies the points of the optical flow map. This paper demonstrates that the feature selection process, and in particular the geometry of the selected feature set, decisively determines the overall system performance. Various computation schedules, which combine geometric constraints with a textural quality metric for the image features, are thus investigated. This paper shows that imposing appropriate distance constraints in the feature selection process significantly increases the output precision of the egomotion estimation unit, thus enabling accurate vision-based UAV self-navigation.
doi_str_mv 10.1109/ICIP.2011.6116114
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6116114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6116114</ieee_id><sourcerecordid>6116114</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-18d40306155db06c2e5a0bba4471b106c399559fe39436507fbad088eb9bea603</originalsourceid><addsrcrecordid>eNo1kM1KAzEUheMf2NY-gLjJC0zNnSSTZFmK1UJBF9ZtTWbutJFpRpKo-PaOWOHAuZxz-RaHkGtgMwBmbleL1dOsZACzCmCQOCFTozQIqRRwxvkpGZVcQ6GlMGdk_F8IdU5GIMuyEFqzSzJO6Y2xAcRhRF6XaPNHRJqwwzr7PtAvn_d0h_0Bc_Q1rfuQcrQ-5ETbPtJPn4avwtmEDd2Egw1hOOYYve3oC-593SEN9tPv7C_uily0tks4PfqEbJZ3z4uHYv14v1rM14UHJXMBuhGMswqkbByr6hKlZc5ZIRQ4GAJujJSmRW4EryRTrbMN0xqdcWgrxifk5o_rEXH7Hv3Bxu_tcSn-A6vLWWs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Angelopoulou, M. E. ; Bouganis, C.</creator><creatorcontrib>Angelopoulou, M. E. ; Bouganis, C.</creatorcontrib><description>Vision-based egomotion estimation can be employed to endow with navigation ability an Unmanned Aerial Vehicle (UAV) that is equipped with an on-board camera. The egomotion estimation block computes the 3D UAV motion, taking as an input a 2D optical flow map that is constructed for each of the captured video frames. This work considers sparse optical flow estimation, and thus the navigation system that is developed includes a feature selection unit, which initially identifies the points of the optical flow map. This paper demonstrates that the feature selection process, and in particular the geometry of the selected feature set, decisively determines the overall system performance. Various computation schedules, which combine geometric constraints with a textural quality metric for the image features, are thus investigated. This paper shows that imposing appropriate distance constraints in the feature selection process significantly increases the output precision of the egomotion estimation unit, thus enabling accurate vision-based UAV self-navigation.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1457713047</identifier><identifier>ISBN: 9781457713040</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781457713033</identifier><identifier>EISBN: 1457713020</identifier><identifier>EISBN: 1457713039</identifier><identifier>EISBN: 9781457713026</identifier><identifier>DOI: 10.1109/ICIP.2011.6116114</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; egomotion estimation ; Estimation ; feature selection ; Navigation ; optical flow ; Optical imaging ; Schedules ; self-navigation ; Three dimensional displays ; Tracking ; Unmanned Aerial Vehicle (UAV)</subject><ispartof>2011 18th IEEE International Conference on Image Processing, 2011, p.2357-2360</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6116114$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6116114$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Angelopoulou, M. E.</creatorcontrib><creatorcontrib>Bouganis, C.</creatorcontrib><title>Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation</title><title>2011 18th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Vision-based egomotion estimation can be employed to endow with navigation ability an Unmanned Aerial Vehicle (UAV) that is equipped with an on-board camera. The egomotion estimation block computes the 3D UAV motion, taking as an input a 2D optical flow map that is constructed for each of the captured video frames. This work considers sparse optical flow estimation, and thus the navigation system that is developed includes a feature selection unit, which initially identifies the points of the optical flow map. This paper demonstrates that the feature selection process, and in particular the geometry of the selected feature set, decisively determines the overall system performance. Various computation schedules, which combine geometric constraints with a textural quality metric for the image features, are thus investigated. This paper shows that imposing appropriate distance constraints in the feature selection process significantly increases the output precision of the egomotion estimation unit, thus enabling accurate vision-based UAV self-navigation.</description><subject>Cameras</subject><subject>egomotion estimation</subject><subject>Estimation</subject><subject>feature selection</subject><subject>Navigation</subject><subject>optical flow</subject><subject>Optical imaging</subject><subject>Schedules</subject><subject>self-navigation</subject><subject>Three dimensional displays</subject><subject>Tracking</subject><subject>Unmanned Aerial Vehicle (UAV)</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1457713047</isbn><isbn>9781457713040</isbn><isbn>9781457713033</isbn><isbn>1457713020</isbn><isbn>1457713039</isbn><isbn>9781457713026</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1KAzEUheMf2NY-gLjJC0zNnSSTZFmK1UJBF9ZtTWbutJFpRpKo-PaOWOHAuZxz-RaHkGtgMwBmbleL1dOsZACzCmCQOCFTozQIqRRwxvkpGZVcQ6GlMGdk_F8IdU5GIMuyEFqzSzJO6Y2xAcRhRF6XaPNHRJqwwzr7PtAvn_d0h_0Bc_Q1rfuQcrQ-5ETbPtJPn4avwtmEDd2Egw1hOOYYve3oC-593SEN9tPv7C_uily0tks4PfqEbJZ3z4uHYv14v1rM14UHJXMBuhGMswqkbByr6hKlZc5ZIRQ4GAJujJSmRW4EryRTrbMN0xqdcWgrxifk5o_rEXH7Hv3Bxu_tcSn-A6vLWWs</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Angelopoulou, M. E.</creator><creator>Bouganis, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation</title><author>Angelopoulou, M. E. ; Bouganis, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-18d40306155db06c2e5a0bba4471b106c399559fe39436507fbad088eb9bea603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>egomotion estimation</topic><topic>Estimation</topic><topic>feature selection</topic><topic>Navigation</topic><topic>optical flow</topic><topic>Optical imaging</topic><topic>Schedules</topic><topic>self-navigation</topic><topic>Three dimensional displays</topic><topic>Tracking</topic><topic>Unmanned Aerial Vehicle (UAV)</topic><toplevel>online_resources</toplevel><creatorcontrib>Angelopoulou, M. E.</creatorcontrib><creatorcontrib>Bouganis, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Angelopoulou, M. E.</au><au>Bouganis, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation</atitle><btitle>2011 18th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2011-09</date><risdate>2011</risdate><spage>2357</spage><epage>2360</epage><pages>2357-2360</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1457713047</isbn><isbn>9781457713040</isbn><eisbn>9781457713033</eisbn><eisbn>1457713020</eisbn><eisbn>1457713039</eisbn><eisbn>9781457713026</eisbn><abstract>Vision-based egomotion estimation can be employed to endow with navigation ability an Unmanned Aerial Vehicle (UAV) that is equipped with an on-board camera. The egomotion estimation block computes the 3D UAV motion, taking as an input a 2D optical flow map that is constructed for each of the captured video frames. This work considers sparse optical flow estimation, and thus the navigation system that is developed includes a feature selection unit, which initially identifies the points of the optical flow map. This paper demonstrates that the feature selection process, and in particular the geometry of the selected feature set, decisively determines the overall system performance. Various computation schedules, which combine geometric constraints with a textural quality metric for the image features, are thus investigated. This paper shows that imposing appropriate distance constraints in the feature selection process significantly increases the output precision of the egomotion estimation unit, thus enabling accurate vision-based UAV self-navigation.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2011.6116114</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2011 18th IEEE International Conference on Image Processing, 2011, p.2357-2360
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_6116114
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
egomotion estimation
Estimation
feature selection
Navigation
optical flow
Optical imaging
Schedules
self-navigation
Three dimensional displays
Tracking
Unmanned Aerial Vehicle (UAV)
title Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20selection%20with%20geometric%20constraints%20for%20vision-based%20Unmanned%20Aerial%20Vehicle%20navigation&rft.btitle=2011%2018th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Angelopoulou,%20M.%20E.&rft.date=2011-09&rft.spage=2357&rft.epage=2360&rft.pages=2357-2360&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1457713047&rft.isbn_list=9781457713040&rft_id=info:doi/10.1109/ICIP.2011.6116114&rft_dat=%3Cieee_6IE%3E6116114%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457713033&rft.eisbn_list=1457713020&rft.eisbn_list=1457713039&rft.eisbn_list=9781457713026&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6116114&rfr_iscdi=true