Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation
Vision-based egomotion estimation can be employed to endow with navigation ability an Unmanned Aerial Vehicle (UAV) that is equipped with an on-board camera. The egomotion estimation block computes the 3D UAV motion, taking as an input a 2D optical flow map that is constructed for each of the captur...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2360 |
---|---|
container_issue | |
container_start_page | 2357 |
container_title | |
container_volume | |
creator | Angelopoulou, M. E. Bouganis, C. |
description | Vision-based egomotion estimation can be employed to endow with navigation ability an Unmanned Aerial Vehicle (UAV) that is equipped with an on-board camera. The egomotion estimation block computes the 3D UAV motion, taking as an input a 2D optical flow map that is constructed for each of the captured video frames. This work considers sparse optical flow estimation, and thus the navigation system that is developed includes a feature selection unit, which initially identifies the points of the optical flow map. This paper demonstrates that the feature selection process, and in particular the geometry of the selected feature set, decisively determines the overall system performance. Various computation schedules, which combine geometric constraints with a textural quality metric for the image features, are thus investigated. This paper shows that imposing appropriate distance constraints in the feature selection process significantly increases the output precision of the egomotion estimation unit, thus enabling accurate vision-based UAV self-navigation. |
doi_str_mv | 10.1109/ICIP.2011.6116114 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6116114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6116114</ieee_id><sourcerecordid>6116114</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-18d40306155db06c2e5a0bba4471b106c399559fe39436507fbad088eb9bea603</originalsourceid><addsrcrecordid>eNo1kM1KAzEUheMf2NY-gLjJC0zNnSSTZFmK1UJBF9ZtTWbutJFpRpKo-PaOWOHAuZxz-RaHkGtgMwBmbleL1dOsZACzCmCQOCFTozQIqRRwxvkpGZVcQ6GlMGdk_F8IdU5GIMuyEFqzSzJO6Y2xAcRhRF6XaPNHRJqwwzr7PtAvn_d0h_0Bc_Q1rfuQcrQ-5ETbPtJPn4avwtmEDd2Egw1hOOYYve3oC-593SEN9tPv7C_uily0tks4PfqEbJZ3z4uHYv14v1rM14UHJXMBuhGMswqkbByr6hKlZc5ZIRQ4GAJujJSmRW4EryRTrbMN0xqdcWgrxifk5o_rEXH7Hv3Bxu_tcSn-A6vLWWs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Angelopoulou, M. E. ; Bouganis, C.</creator><creatorcontrib>Angelopoulou, M. E. ; Bouganis, C.</creatorcontrib><description>Vision-based egomotion estimation can be employed to endow with navigation ability an Unmanned Aerial Vehicle (UAV) that is equipped with an on-board camera. The egomotion estimation block computes the 3D UAV motion, taking as an input a 2D optical flow map that is constructed for each of the captured video frames. This work considers sparse optical flow estimation, and thus the navigation system that is developed includes a feature selection unit, which initially identifies the points of the optical flow map. This paper demonstrates that the feature selection process, and in particular the geometry of the selected feature set, decisively determines the overall system performance. Various computation schedules, which combine geometric constraints with a textural quality metric for the image features, are thus investigated. This paper shows that imposing appropriate distance constraints in the feature selection process significantly increases the output precision of the egomotion estimation unit, thus enabling accurate vision-based UAV self-navigation.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1457713047</identifier><identifier>ISBN: 9781457713040</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781457713033</identifier><identifier>EISBN: 1457713020</identifier><identifier>EISBN: 1457713039</identifier><identifier>EISBN: 9781457713026</identifier><identifier>DOI: 10.1109/ICIP.2011.6116114</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; egomotion estimation ; Estimation ; feature selection ; Navigation ; optical flow ; Optical imaging ; Schedules ; self-navigation ; Three dimensional displays ; Tracking ; Unmanned Aerial Vehicle (UAV)</subject><ispartof>2011 18th IEEE International Conference on Image Processing, 2011, p.2357-2360</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6116114$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6116114$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Angelopoulou, M. E.</creatorcontrib><creatorcontrib>Bouganis, C.</creatorcontrib><title>Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation</title><title>2011 18th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Vision-based egomotion estimation can be employed to endow with navigation ability an Unmanned Aerial Vehicle (UAV) that is equipped with an on-board camera. The egomotion estimation block computes the 3D UAV motion, taking as an input a 2D optical flow map that is constructed for each of the captured video frames. This work considers sparse optical flow estimation, and thus the navigation system that is developed includes a feature selection unit, which initially identifies the points of the optical flow map. This paper demonstrates that the feature selection process, and in particular the geometry of the selected feature set, decisively determines the overall system performance. Various computation schedules, which combine geometric constraints with a textural quality metric for the image features, are thus investigated. This paper shows that imposing appropriate distance constraints in the feature selection process significantly increases the output precision of the egomotion estimation unit, thus enabling accurate vision-based UAV self-navigation.</description><subject>Cameras</subject><subject>egomotion estimation</subject><subject>Estimation</subject><subject>feature selection</subject><subject>Navigation</subject><subject>optical flow</subject><subject>Optical imaging</subject><subject>Schedules</subject><subject>self-navigation</subject><subject>Three dimensional displays</subject><subject>Tracking</subject><subject>Unmanned Aerial Vehicle (UAV)</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1457713047</isbn><isbn>9781457713040</isbn><isbn>9781457713033</isbn><isbn>1457713020</isbn><isbn>1457713039</isbn><isbn>9781457713026</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1KAzEUheMf2NY-gLjJC0zNnSSTZFmK1UJBF9ZtTWbutJFpRpKo-PaOWOHAuZxz-RaHkGtgMwBmbleL1dOsZACzCmCQOCFTozQIqRRwxvkpGZVcQ6GlMGdk_F8IdU5GIMuyEFqzSzJO6Y2xAcRhRF6XaPNHRJqwwzr7PtAvn_d0h_0Bc_Q1rfuQcrQ-5ETbPtJPn4avwtmEDd2Egw1hOOYYve3oC-593SEN9tPv7C_uily0tks4PfqEbJZ3z4uHYv14v1rM14UHJXMBuhGMswqkbByr6hKlZc5ZIRQ4GAJujJSmRW4EryRTrbMN0xqdcWgrxifk5o_rEXH7Hv3Bxu_tcSn-A6vLWWs</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Angelopoulou, M. E.</creator><creator>Bouganis, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation</title><author>Angelopoulou, M. E. ; Bouganis, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-18d40306155db06c2e5a0bba4471b106c399559fe39436507fbad088eb9bea603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>egomotion estimation</topic><topic>Estimation</topic><topic>feature selection</topic><topic>Navigation</topic><topic>optical flow</topic><topic>Optical imaging</topic><topic>Schedules</topic><topic>self-navigation</topic><topic>Three dimensional displays</topic><topic>Tracking</topic><topic>Unmanned Aerial Vehicle (UAV)</topic><toplevel>online_resources</toplevel><creatorcontrib>Angelopoulou, M. E.</creatorcontrib><creatorcontrib>Bouganis, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Angelopoulou, M. E.</au><au>Bouganis, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation</atitle><btitle>2011 18th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2011-09</date><risdate>2011</risdate><spage>2357</spage><epage>2360</epage><pages>2357-2360</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1457713047</isbn><isbn>9781457713040</isbn><eisbn>9781457713033</eisbn><eisbn>1457713020</eisbn><eisbn>1457713039</eisbn><eisbn>9781457713026</eisbn><abstract>Vision-based egomotion estimation can be employed to endow with navigation ability an Unmanned Aerial Vehicle (UAV) that is equipped with an on-board camera. The egomotion estimation block computes the 3D UAV motion, taking as an input a 2D optical flow map that is constructed for each of the captured video frames. This work considers sparse optical flow estimation, and thus the navigation system that is developed includes a feature selection unit, which initially identifies the points of the optical flow map. This paper demonstrates that the feature selection process, and in particular the geometry of the selected feature set, decisively determines the overall system performance. Various computation schedules, which combine geometric constraints with a textural quality metric for the image features, are thus investigated. This paper shows that imposing appropriate distance constraints in the feature selection process significantly increases the output precision of the egomotion estimation unit, thus enabling accurate vision-based UAV self-navigation.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2011.6116114</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2011 18th IEEE International Conference on Image Processing, 2011, p.2357-2360 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_6116114 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cameras egomotion estimation Estimation feature selection Navigation optical flow Optical imaging Schedules self-navigation Three dimensional displays Tracking Unmanned Aerial Vehicle (UAV) |
title | Feature selection with geometric constraints for vision-based Unmanned Aerial Vehicle navigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20selection%20with%20geometric%20constraints%20for%20vision-based%20Unmanned%20Aerial%20Vehicle%20navigation&rft.btitle=2011%2018th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Angelopoulou,%20M.%20E.&rft.date=2011-09&rft.spage=2357&rft.epage=2360&rft.pages=2357-2360&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1457713047&rft.isbn_list=9781457713040&rft_id=info:doi/10.1109/ICIP.2011.6116114&rft_dat=%3Cieee_6IE%3E6116114%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457713033&rft.eisbn_list=1457713020&rft.eisbn_list=1457713039&rft.eisbn_list=9781457713026&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6116114&rfr_iscdi=true |