A new framework for automated segmentation of left ventricle wall from contrast enhanced cardiac magnetic resonance images

A novel automated framework for the segmentation of the left ventricle (LV) wall from contrast enhanced cardiac magnetic resonance images (CE-CMRI) is proposed. The framework consists of two main steps. First, the inner cavity of the LV is segmented from the surrounding tissues based on finding the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Elnakib, A., Beache, G. M., Gimel'farb, G., El-Baz, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2292
container_issue
container_start_page 2289
container_title
container_volume
creator Elnakib, A.
Beache, G. M.
Gimel'farb, G.
El-Baz, A.
description A novel automated framework for the segmentation of the left ventricle (LV) wall from contrast enhanced cardiac magnetic resonance images (CE-CMRI) is proposed. The framework consists of two main steps. First, the inner cavity of the LV is segmented from the surrounding tissues based on finding the Maximum A Posteriori (MAP) estimation of a new energy function using a graph-cuts-based optimization algorithm. The proposed energy function consists of three descriptors: 1 st -order visual appearance descriptors of the CE-CMRI, a 2D spatially rotation-variant 2 nd -order homogeneity descriptor, and a LV inner cavity shape descriptor. Second, the outer contour of the LV is segmented by generating an orthogonal wave, starting from the LV inner contour, by solving an Eikonal partial differential equation with a new speed function that combines the prior shape and current visual appearance models of the LV wall. The proposed framework was tested on in-vivo CE-CMR images and validated with manual expert delineations of left ventricle borders. Experiments and comparison results on real CE-CMR images confirm the robustness and accuracy of the proposed framework over the existing ones.
doi_str_mv 10.1109/ICIP.2011.6116096
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6116096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6116096</ieee_id><sourcerecordid>6116096</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8209e8a7350a57b597c1b180f09b71f47298df0cdee9a205a6a5d4792bab0afd3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1Loi39AMTGP5Dia8exvawqHpUqwQLW1U1yXQJJjBxDBV9PEGU10hnNjDSMXYJYAAh3vV6tHxdSACwKgEK44ojNnbGQa2NACaWO2UQqC5nVuTth038jN6dsAlrKLLdWnLPpMLwKMRYpmLDvJe9pz33EjvYhvnEfIsePFDpMVPOBdh31CVMTeh48b8kn_jmS2FQt8T227ZgNHa_CyHBInPoX7KsxWmGsG6x4h7ueUlPxSEPofz3ejIyGC3bmsR1oftAZe769eVrdZ5uHu_VquckaMDplVgpHFo3SArUptTMVlGCFF6404HMjna29qGoih1JoLFDXuXGyxFKgr9WMXf31NkS0fY_jevzaHj5UP7DDY7o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new framework for automated segmentation of left ventricle wall from contrast enhanced cardiac magnetic resonance images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Elnakib, A. ; Beache, G. M. ; Gimel'farb, G. ; El-Baz, A.</creator><creatorcontrib>Elnakib, A. ; Beache, G. M. ; Gimel'farb, G. ; El-Baz, A.</creatorcontrib><description>A novel automated framework for the segmentation of the left ventricle (LV) wall from contrast enhanced cardiac magnetic resonance images (CE-CMRI) is proposed. The framework consists of two main steps. First, the inner cavity of the LV is segmented from the surrounding tissues based on finding the Maximum A Posteriori (MAP) estimation of a new energy function using a graph-cuts-based optimization algorithm. The proposed energy function consists of three descriptors: 1 st -order visual appearance descriptors of the CE-CMRI, a 2D spatially rotation-variant 2 nd -order homogeneity descriptor, and a LV inner cavity shape descriptor. Second, the outer contour of the LV is segmented by generating an orthogonal wave, starting from the LV inner contour, by solving an Eikonal partial differential equation with a new speed function that combines the prior shape and current visual appearance models of the LV wall. The proposed framework was tested on in-vivo CE-CMR images and validated with manual expert delineations of left ventricle borders. Experiments and comparison results on real CE-CMR images confirm the robustness and accuracy of the proposed framework over the existing ones.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1457713047</identifier><identifier>ISBN: 9781457713040</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781457713033</identifier><identifier>EISBN: 1457713020</identifier><identifier>EISBN: 1457713039</identifier><identifier>EISBN: 9781457713026</identifier><identifier>DOI: 10.1109/ICIP.2011.6116096</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cavity resonators ; Conferences ; Contrast Enhanced Cardiac Magnetic Resonance Images ; Heart ; Image segmentation ; Joints ; Left Ventricle ; Markov-Gibbs Random Field ; Segmentation ; Shape ; Visualization</subject><ispartof>2011 18th IEEE International Conference on Image Processing, 2011, p.2289-2292</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6116096$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6116096$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elnakib, A.</creatorcontrib><creatorcontrib>Beache, G. M.</creatorcontrib><creatorcontrib>Gimel'farb, G.</creatorcontrib><creatorcontrib>El-Baz, A.</creatorcontrib><title>A new framework for automated segmentation of left ventricle wall from contrast enhanced cardiac magnetic resonance images</title><title>2011 18th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>A novel automated framework for the segmentation of the left ventricle (LV) wall from contrast enhanced cardiac magnetic resonance images (CE-CMRI) is proposed. The framework consists of two main steps. First, the inner cavity of the LV is segmented from the surrounding tissues based on finding the Maximum A Posteriori (MAP) estimation of a new energy function using a graph-cuts-based optimization algorithm. The proposed energy function consists of three descriptors: 1 st -order visual appearance descriptors of the CE-CMRI, a 2D spatially rotation-variant 2 nd -order homogeneity descriptor, and a LV inner cavity shape descriptor. Second, the outer contour of the LV is segmented by generating an orthogonal wave, starting from the LV inner contour, by solving an Eikonal partial differential equation with a new speed function that combines the prior shape and current visual appearance models of the LV wall. The proposed framework was tested on in-vivo CE-CMR images and validated with manual expert delineations of left ventricle borders. Experiments and comparison results on real CE-CMR images confirm the robustness and accuracy of the proposed framework over the existing ones.</description><subject>Cavity resonators</subject><subject>Conferences</subject><subject>Contrast Enhanced Cardiac Magnetic Resonance Images</subject><subject>Heart</subject><subject>Image segmentation</subject><subject>Joints</subject><subject>Left Ventricle</subject><subject>Markov-Gibbs Random Field</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Visualization</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1457713047</isbn><isbn>9781457713040</isbn><isbn>9781457713033</isbn><isbn>1457713020</isbn><isbn>1457713039</isbn><isbn>9781457713026</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1Loi39AMTGP5Dia8exvawqHpUqwQLW1U1yXQJJjBxDBV9PEGU10hnNjDSMXYJYAAh3vV6tHxdSACwKgEK44ojNnbGQa2NACaWO2UQqC5nVuTth038jN6dsAlrKLLdWnLPpMLwKMRYpmLDvJe9pz33EjvYhvnEfIsePFDpMVPOBdh31CVMTeh48b8kn_jmS2FQt8T227ZgNHa_CyHBInPoX7KsxWmGsG6x4h7ueUlPxSEPofz3ejIyGC3bmsR1oftAZe769eVrdZ5uHu_VquckaMDplVgpHFo3SArUptTMVlGCFF6404HMjna29qGoih1JoLFDXuXGyxFKgr9WMXf31NkS0fY_jevzaHj5UP7DDY7o</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Elnakib, A.</creator><creator>Beache, G. M.</creator><creator>Gimel'farb, G.</creator><creator>El-Baz, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>A new framework for automated segmentation of left ventricle wall from contrast enhanced cardiac magnetic resonance images</title><author>Elnakib, A. ; Beache, G. M. ; Gimel'farb, G. ; El-Baz, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8209e8a7350a57b597c1b180f09b71f47298df0cdee9a205a6a5d4792bab0afd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cavity resonators</topic><topic>Conferences</topic><topic>Contrast Enhanced Cardiac Magnetic Resonance Images</topic><topic>Heart</topic><topic>Image segmentation</topic><topic>Joints</topic><topic>Left Ventricle</topic><topic>Markov-Gibbs Random Field</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Elnakib, A.</creatorcontrib><creatorcontrib>Beache, G. M.</creatorcontrib><creatorcontrib>Gimel'farb, G.</creatorcontrib><creatorcontrib>El-Baz, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elnakib, A.</au><au>Beache, G. M.</au><au>Gimel'farb, G.</au><au>El-Baz, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new framework for automated segmentation of left ventricle wall from contrast enhanced cardiac magnetic resonance images</atitle><btitle>2011 18th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2011-09</date><risdate>2011</risdate><spage>2289</spage><epage>2292</epage><pages>2289-2292</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1457713047</isbn><isbn>9781457713040</isbn><eisbn>9781457713033</eisbn><eisbn>1457713020</eisbn><eisbn>1457713039</eisbn><eisbn>9781457713026</eisbn><abstract>A novel automated framework for the segmentation of the left ventricle (LV) wall from contrast enhanced cardiac magnetic resonance images (CE-CMRI) is proposed. The framework consists of two main steps. First, the inner cavity of the LV is segmented from the surrounding tissues based on finding the Maximum A Posteriori (MAP) estimation of a new energy function using a graph-cuts-based optimization algorithm. The proposed energy function consists of three descriptors: 1 st -order visual appearance descriptors of the CE-CMRI, a 2D spatially rotation-variant 2 nd -order homogeneity descriptor, and a LV inner cavity shape descriptor. Second, the outer contour of the LV is segmented by generating an orthogonal wave, starting from the LV inner contour, by solving an Eikonal partial differential equation with a new speed function that combines the prior shape and current visual appearance models of the LV wall. The proposed framework was tested on in-vivo CE-CMR images and validated with manual expert delineations of left ventricle borders. Experiments and comparison results on real CE-CMR images confirm the robustness and accuracy of the proposed framework over the existing ones.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2011.6116096</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2011 18th IEEE International Conference on Image Processing, 2011, p.2289-2292
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_6116096
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cavity resonators
Conferences
Contrast Enhanced Cardiac Magnetic Resonance Images
Heart
Image segmentation
Joints
Left Ventricle
Markov-Gibbs Random Field
Segmentation
Shape
Visualization
title A new framework for automated segmentation of left ventricle wall from contrast enhanced cardiac magnetic resonance images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20framework%20for%20automated%20segmentation%20of%20left%20ventricle%20wall%20from%20contrast%20enhanced%20cardiac%20magnetic%20resonance%20images&rft.btitle=2011%2018th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Elnakib,%20A.&rft.date=2011-09&rft.spage=2289&rft.epage=2292&rft.pages=2289-2292&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1457713047&rft.isbn_list=9781457713040&rft_id=info:doi/10.1109/ICIP.2011.6116096&rft_dat=%3Cieee_6IE%3E6116096%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457713033&rft.eisbn_list=1457713020&rft.eisbn_list=1457713039&rft.eisbn_list=9781457713026&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6116096&rfr_iscdi=true