Robust view transformation model for gait recognition
Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2076 |
---|---|
container_issue | |
container_start_page | 2073 |
container_title | |
container_volume | |
creator | Shuai Zheng Junge Zhang Kaiqi Huang Ran He Tieniu Tan |
description | Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method establishes a robust view transformation model via robust principal component analysis. Partial least square is used as feature selection method. Compared with the existing methods, the proposed method finds out a shared linear correlated low rank subspace, which brings the advantages that the view transformation model is robust to viewing angle variation, clothing and carrying condition changes. Conducted on the CASIA gait dataset, experimental results show that the proposed method outperforms the other existing methods. |
doi_str_mv | 10.1109/ICIP.2011.6115889 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6115889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6115889</ieee_id><sourcerecordid>6115889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-e484bce68db953b1bc94d2c9e468703f5ba6d1175125bec116c1816256c93c3c3</originalsourceid><addsrcrecordid>eNo1j9tKw0AURY83MK39APFlfiDpnLnPowQvgYJF9LnMTCZlpEkkiYp_b8TKfthsFizYANdIC0Rq11VZbQtGEQuFKI2xJ7Cy2qCQWiOnnJ9CxrjB3Ehhz2DxD4Q-hwwlY7kwhl7CYhzfKJ1FHDOQz73_GCfymeIXmQbXjU0_tG5KfUfavo4HMm-yd2kiQwz9vku_6AouGncY4-rYS3i9v3spH_PN00NV3m7ywJSa8iiM8CEqU3sruUcfrKhZsFEooylvpHeqRtQSmfQxIKqABhWTKlge5izh5s-bYoy79yG1bvjeHe_zH9HeSak</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust view transformation model for gait recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shuai Zheng ; Junge Zhang ; Kaiqi Huang ; Ran He ; Tieniu Tan</creator><creatorcontrib>Shuai Zheng ; Junge Zhang ; Kaiqi Huang ; Ran He ; Tieniu Tan</creatorcontrib><description>Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method establishes a robust view transformation model via robust principal component analysis. Partial least square is used as feature selection method. Compared with the existing methods, the proposed method finds out a shared linear correlated low rank subspace, which brings the advantages that the view transformation model is robust to viewing angle variation, clothing and carrying condition changes. Conducted on the CASIA gait dataset, experimental results show that the proposed method outperforms the other existing methods.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1457713047</identifier><identifier>ISBN: 9781457713040</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781457713033</identifier><identifier>EISBN: 1457713020</identifier><identifier>EISBN: 1457713039</identifier><identifier>EISBN: 9781457713026</identifier><identifier>DOI: 10.1109/ICIP.2011.6115889</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Feature extraction ; Gait Recognition ; Image recognition ; Legged locomotion ; Low-rank ; Probes ; Robustness ; Vectors ; View Transformation Model</subject><ispartof>2011 18th IEEE International Conference on Image Processing, 2011, p.2073-2076</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-e484bce68db953b1bc94d2c9e468703f5ba6d1175125bec116c1816256c93c3c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6115889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6115889$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shuai Zheng</creatorcontrib><creatorcontrib>Junge Zhang</creatorcontrib><creatorcontrib>Kaiqi Huang</creatorcontrib><creatorcontrib>Ran He</creatorcontrib><creatorcontrib>Tieniu Tan</creatorcontrib><title>Robust view transformation model for gait recognition</title><title>2011 18th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method establishes a robust view transformation model via robust principal component analysis. Partial least square is used as feature selection method. Compared with the existing methods, the proposed method finds out a shared linear correlated low rank subspace, which brings the advantages that the view transformation model is robust to viewing angle variation, clothing and carrying condition changes. Conducted on the CASIA gait dataset, experimental results show that the proposed method outperforms the other existing methods.</description><subject>Conferences</subject><subject>Feature extraction</subject><subject>Gait Recognition</subject><subject>Image recognition</subject><subject>Legged locomotion</subject><subject>Low-rank</subject><subject>Probes</subject><subject>Robustness</subject><subject>Vectors</subject><subject>View Transformation Model</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1457713047</isbn><isbn>9781457713040</isbn><isbn>9781457713033</isbn><isbn>1457713020</isbn><isbn>1457713039</isbn><isbn>9781457713026</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j9tKw0AURY83MK39APFlfiDpnLnPowQvgYJF9LnMTCZlpEkkiYp_b8TKfthsFizYANdIC0Rq11VZbQtGEQuFKI2xJ7Cy2qCQWiOnnJ9CxrjB3Ehhz2DxD4Q-hwwlY7kwhl7CYhzfKJ1FHDOQz73_GCfymeIXmQbXjU0_tG5KfUfavo4HMm-yd2kiQwz9vku_6AouGncY4-rYS3i9v3spH_PN00NV3m7ywJSa8iiM8CEqU3sruUcfrKhZsFEooylvpHeqRtQSmfQxIKqABhWTKlge5izh5s-bYoy79yG1bvjeHe_zH9HeSak</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Shuai Zheng</creator><creator>Junge Zhang</creator><creator>Kaiqi Huang</creator><creator>Ran He</creator><creator>Tieniu Tan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>Robust view transformation model for gait recognition</title><author>Shuai Zheng ; Junge Zhang ; Kaiqi Huang ; Ran He ; Tieniu Tan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-e484bce68db953b1bc94d2c9e468703f5ba6d1175125bec116c1816256c93c3c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Conferences</topic><topic>Feature extraction</topic><topic>Gait Recognition</topic><topic>Image recognition</topic><topic>Legged locomotion</topic><topic>Low-rank</topic><topic>Probes</topic><topic>Robustness</topic><topic>Vectors</topic><topic>View Transformation Model</topic><toplevel>online_resources</toplevel><creatorcontrib>Shuai Zheng</creatorcontrib><creatorcontrib>Junge Zhang</creatorcontrib><creatorcontrib>Kaiqi Huang</creatorcontrib><creatorcontrib>Ran He</creatorcontrib><creatorcontrib>Tieniu Tan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shuai Zheng</au><au>Junge Zhang</au><au>Kaiqi Huang</au><au>Ran He</au><au>Tieniu Tan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust view transformation model for gait recognition</atitle><btitle>2011 18th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>2073</spage><epage>2076</epage><pages>2073-2076</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1457713047</isbn><isbn>9781457713040</isbn><eisbn>9781457713033</eisbn><eisbn>1457713020</eisbn><eisbn>1457713039</eisbn><eisbn>9781457713026</eisbn><abstract>Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method establishes a robust view transformation model via robust principal component analysis. Partial least square is used as feature selection method. Compared with the existing methods, the proposed method finds out a shared linear correlated low rank subspace, which brings the advantages that the view transformation model is robust to viewing angle variation, clothing and carrying condition changes. Conducted on the CASIA gait dataset, experimental results show that the proposed method outperforms the other existing methods.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2011.6115889</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2011 18th IEEE International Conference on Image Processing, 2011, p.2073-2076 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_6115889 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Conferences Feature extraction Gait Recognition Image recognition Legged locomotion Low-rank Probes Robustness Vectors View Transformation Model |
title | Robust view transformation model for gait recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20view%20transformation%20model%20for%20gait%20recognition&rft.btitle=2011%2018th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Shuai%20Zheng&rft.date=2011-01-01&rft.spage=2073&rft.epage=2076&rft.pages=2073-2076&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1457713047&rft.isbn_list=9781457713040&rft_id=info:doi/10.1109/ICIP.2011.6115889&rft_dat=%3Cieee_6IE%3E6115889%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457713033&rft.eisbn_list=1457713020&rft.eisbn_list=1457713039&rft.eisbn_list=9781457713026&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6115889&rfr_iscdi=true |