Robust view transformation model for gait recognition

Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shuai Zheng, Junge Zhang, Kaiqi Huang, Ran He, Tieniu Tan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2076
container_issue
container_start_page 2073
container_title
container_volume
creator Shuai Zheng
Junge Zhang
Kaiqi Huang
Ran He
Tieniu Tan
description Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method establishes a robust view transformation model via robust principal component analysis. Partial least square is used as feature selection method. Compared with the existing methods, the proposed method finds out a shared linear correlated low rank subspace, which brings the advantages that the view transformation model is robust to viewing angle variation, clothing and carrying condition changes. Conducted on the CASIA gait dataset, experimental results show that the proposed method outperforms the other existing methods.
doi_str_mv 10.1109/ICIP.2011.6115889
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6115889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6115889</ieee_id><sourcerecordid>6115889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-e484bce68db953b1bc94d2c9e468703f5ba6d1175125bec116c1816256c93c3c3</originalsourceid><addsrcrecordid>eNo1j9tKw0AURY83MK39APFlfiDpnLnPowQvgYJF9LnMTCZlpEkkiYp_b8TKfthsFizYANdIC0Rq11VZbQtGEQuFKI2xJ7Cy2qCQWiOnnJ9CxrjB3Ehhz2DxD4Q-hwwlY7kwhl7CYhzfKJ1FHDOQz73_GCfymeIXmQbXjU0_tG5KfUfavo4HMm-yd2kiQwz9vku_6AouGncY4-rYS3i9v3spH_PN00NV3m7ywJSa8iiM8CEqU3sruUcfrKhZsFEooylvpHeqRtQSmfQxIKqABhWTKlge5izh5s-bYoy79yG1bvjeHe_zH9HeSak</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust view transformation model for gait recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shuai Zheng ; Junge Zhang ; Kaiqi Huang ; Ran He ; Tieniu Tan</creator><creatorcontrib>Shuai Zheng ; Junge Zhang ; Kaiqi Huang ; Ran He ; Tieniu Tan</creatorcontrib><description>Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method establishes a robust view transformation model via robust principal component analysis. Partial least square is used as feature selection method. Compared with the existing methods, the proposed method finds out a shared linear correlated low rank subspace, which brings the advantages that the view transformation model is robust to viewing angle variation, clothing and carrying condition changes. Conducted on the CASIA gait dataset, experimental results show that the proposed method outperforms the other existing methods.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1457713047</identifier><identifier>ISBN: 9781457713040</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781457713033</identifier><identifier>EISBN: 1457713020</identifier><identifier>EISBN: 1457713039</identifier><identifier>EISBN: 9781457713026</identifier><identifier>DOI: 10.1109/ICIP.2011.6115889</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Feature extraction ; Gait Recognition ; Image recognition ; Legged locomotion ; Low-rank ; Probes ; Robustness ; Vectors ; View Transformation Model</subject><ispartof>2011 18th IEEE International Conference on Image Processing, 2011, p.2073-2076</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-e484bce68db953b1bc94d2c9e468703f5ba6d1175125bec116c1816256c93c3c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6115889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6115889$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shuai Zheng</creatorcontrib><creatorcontrib>Junge Zhang</creatorcontrib><creatorcontrib>Kaiqi Huang</creatorcontrib><creatorcontrib>Ran He</creatorcontrib><creatorcontrib>Tieniu Tan</creatorcontrib><title>Robust view transformation model for gait recognition</title><title>2011 18th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method establishes a robust view transformation model via robust principal component analysis. Partial least square is used as feature selection method. Compared with the existing methods, the proposed method finds out a shared linear correlated low rank subspace, which brings the advantages that the view transformation model is robust to viewing angle variation, clothing and carrying condition changes. Conducted on the CASIA gait dataset, experimental results show that the proposed method outperforms the other existing methods.</description><subject>Conferences</subject><subject>Feature extraction</subject><subject>Gait Recognition</subject><subject>Image recognition</subject><subject>Legged locomotion</subject><subject>Low-rank</subject><subject>Probes</subject><subject>Robustness</subject><subject>Vectors</subject><subject>View Transformation Model</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1457713047</isbn><isbn>9781457713040</isbn><isbn>9781457713033</isbn><isbn>1457713020</isbn><isbn>1457713039</isbn><isbn>9781457713026</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j9tKw0AURY83MK39APFlfiDpnLnPowQvgYJF9LnMTCZlpEkkiYp_b8TKfthsFizYANdIC0Rq11VZbQtGEQuFKI2xJ7Cy2qCQWiOnnJ9CxrjB3Ehhz2DxD4Q-hwwlY7kwhl7CYhzfKJ1FHDOQz73_GCfymeIXmQbXjU0_tG5KfUfavo4HMm-yd2kiQwz9vku_6AouGncY4-rYS3i9v3spH_PN00NV3m7ywJSa8iiM8CEqU3sruUcfrKhZsFEooylvpHeqRtQSmfQxIKqABhWTKlge5izh5s-bYoy79yG1bvjeHe_zH9HeSak</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Shuai Zheng</creator><creator>Junge Zhang</creator><creator>Kaiqi Huang</creator><creator>Ran He</creator><creator>Tieniu Tan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>Robust view transformation model for gait recognition</title><author>Shuai Zheng ; Junge Zhang ; Kaiqi Huang ; Ran He ; Tieniu Tan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-e484bce68db953b1bc94d2c9e468703f5ba6d1175125bec116c1816256c93c3c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Conferences</topic><topic>Feature extraction</topic><topic>Gait Recognition</topic><topic>Image recognition</topic><topic>Legged locomotion</topic><topic>Low-rank</topic><topic>Probes</topic><topic>Robustness</topic><topic>Vectors</topic><topic>View Transformation Model</topic><toplevel>online_resources</toplevel><creatorcontrib>Shuai Zheng</creatorcontrib><creatorcontrib>Junge Zhang</creatorcontrib><creatorcontrib>Kaiqi Huang</creatorcontrib><creatorcontrib>Ran He</creatorcontrib><creatorcontrib>Tieniu Tan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shuai Zheng</au><au>Junge Zhang</au><au>Kaiqi Huang</au><au>Ran He</au><au>Tieniu Tan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust view transformation model for gait recognition</atitle><btitle>2011 18th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>2073</spage><epage>2076</epage><pages>2073-2076</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1457713047</isbn><isbn>9781457713040</isbn><eisbn>9781457713033</eisbn><eisbn>1457713020</eisbn><eisbn>1457713039</eisbn><eisbn>9781457713026</eisbn><abstract>Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method establishes a robust view transformation model via robust principal component analysis. Partial least square is used as feature selection method. Compared with the existing methods, the proposed method finds out a shared linear correlated low rank subspace, which brings the advantages that the view transformation model is robust to viewing angle variation, clothing and carrying condition changes. Conducted on the CASIA gait dataset, experimental results show that the proposed method outperforms the other existing methods.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2011.6115889</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2011 18th IEEE International Conference on Image Processing, 2011, p.2073-2076
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_6115889
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Conferences
Feature extraction
Gait Recognition
Image recognition
Legged locomotion
Low-rank
Probes
Robustness
Vectors
View Transformation Model
title Robust view transformation model for gait recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20view%20transformation%20model%20for%20gait%20recognition&rft.btitle=2011%2018th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Shuai%20Zheng&rft.date=2011-01-01&rft.spage=2073&rft.epage=2076&rft.pages=2073-2076&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1457713047&rft.isbn_list=9781457713040&rft_id=info:doi/10.1109/ICIP.2011.6115889&rft_dat=%3Cieee_6IE%3E6115889%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457713033&rft.eisbn_list=1457713020&rft.eisbn_list=1457713039&rft.eisbn_list=9781457713026&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6115889&rfr_iscdi=true