Lessons learned in improving the adoption of a real-time NLP decision support system
While most research in the NLP domain focuses on information accuracy, the adoption of NLP applications in healthcare extends beyond technical innovations. This study investigates the adoption issues of an NLP application in three different field sites. Using both quantitative log analysis and quali...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 648 |
---|---|
container_issue | |
container_start_page | 643 |
container_title | |
container_volume | |
creator | Yang Huang Zisook, D. Yunan Chen Selter, M. Minardi, P. Mattison, J. |
description | While most research in the NLP domain focuses on information accuracy, the adoption of NLP applications in healthcare extends beyond technical innovations. This study investigates the adoption issues of an NLP application in three different field sites. Using both quantitative log analysis and qualitative user interviews, we identified four main factors that affect NLP adoption: organizational culture and support, system usability, information quality and system reliability. These factors must be considered to ensure successful adoption of NLP applications that provide real-time decision support in a clinical care setting. |
doi_str_mv | 10.1109/BIBMW.2011.6112446 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6112446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6112446</ieee_id><sourcerecordid>6112446</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c925cfe3b5374a11aaf26ffe824335748c16d823e19eb8ef2ee1abd5b80adca63</originalsourceid><addsrcrecordid>eNo1kMtKxDAYhSMiqGNfQDd5gdb-uXfpDDoO1MtixOWQNn800jalqcK8vYrj2Rw-DnyLQ8gllAVAWV0vN8uH14KVAIUCYEKoI3IOQmoNCrg8JlmlzT8zdUqylD7KnyhldAVnZFtjSnFItEM7DehoGGjoxyl-heGNzu9IrYvjHOJAo6eWTmi7fA490sf6mTpsQ_rd0uc4xmmmaZ9m7C_IibddwuzQC_Jyd7td3ef103qzuqnzAFrOeVsx2XrkjeRaWABrPVPeo2GCc6mFaUE5wzhChY1BzxDBNk42prSutYovyNWfNyDibpxCb6f97nAE_wZF4FLN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lessons learned in improving the adoption of a real-time NLP decision support system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yang Huang ; Zisook, D. ; Yunan Chen ; Selter, M. ; Minardi, P. ; Mattison, J.</creator><creatorcontrib>Yang Huang ; Zisook, D. ; Yunan Chen ; Selter, M. ; Minardi, P. ; Mattison, J.</creatorcontrib><description>While most research in the NLP domain focuses on information accuracy, the adoption of NLP applications in healthcare extends beyond technical innovations. This study investigates the adoption issues of an NLP application in three different field sites. Using both quantitative log analysis and qualitative user interviews, we identified four main factors that affect NLP adoption: organizational culture and support, system usability, information quality and system reliability. These factors must be considered to ensure successful adoption of NLP applications that provide real-time decision support in a clinical care setting.</description><identifier>ISBN: 9781457716126</identifier><identifier>ISBN: 1457716127</identifier><identifier>EISBN: 1457716135</identifier><identifier>EISBN: 9781457716133</identifier><identifier>DOI: 10.1109/BIBMW.2011.6112446</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Decision Support ; Encoding ; History ; Medical services ; Natural language processing ; NLP ; Real time systems ; Real-time ; Time factors ; User Adoption</subject><ispartof>2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), 2011, p.643-648</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6112446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6112446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang Huang</creatorcontrib><creatorcontrib>Zisook, D.</creatorcontrib><creatorcontrib>Yunan Chen</creatorcontrib><creatorcontrib>Selter, M.</creatorcontrib><creatorcontrib>Minardi, P.</creatorcontrib><creatorcontrib>Mattison, J.</creatorcontrib><title>Lessons learned in improving the adoption of a real-time NLP decision support system</title><title>2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)</title><addtitle>BIBMW</addtitle><description>While most research in the NLP domain focuses on information accuracy, the adoption of NLP applications in healthcare extends beyond technical innovations. This study investigates the adoption issues of an NLP application in three different field sites. Using both quantitative log analysis and qualitative user interviews, we identified four main factors that affect NLP adoption: organizational culture and support, system usability, information quality and system reliability. These factors must be considered to ensure successful adoption of NLP applications that provide real-time decision support in a clinical care setting.</description><subject>Accuracy</subject><subject>Decision Support</subject><subject>Encoding</subject><subject>History</subject><subject>Medical services</subject><subject>Natural language processing</subject><subject>NLP</subject><subject>Real time systems</subject><subject>Real-time</subject><subject>Time factors</subject><subject>User Adoption</subject><isbn>9781457716126</isbn><isbn>1457716127</isbn><isbn>1457716135</isbn><isbn>9781457716133</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKxDAYhSMiqGNfQDd5gdb-uXfpDDoO1MtixOWQNn800jalqcK8vYrj2Rw-DnyLQ8gllAVAWV0vN8uH14KVAIUCYEKoI3IOQmoNCrg8JlmlzT8zdUqylD7KnyhldAVnZFtjSnFItEM7DehoGGjoxyl-heGNzu9IrYvjHOJAo6eWTmi7fA490sf6mTpsQ_rd0uc4xmmmaZ9m7C_IibddwuzQC_Jyd7td3ef103qzuqnzAFrOeVsx2XrkjeRaWABrPVPeo2GCc6mFaUE5wzhChY1BzxDBNk42prSutYovyNWfNyDibpxCb6f97nAE_wZF4FLN</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Yang Huang</creator><creator>Zisook, D.</creator><creator>Yunan Chen</creator><creator>Selter, M.</creator><creator>Minardi, P.</creator><creator>Mattison, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Lessons learned in improving the adoption of a real-time NLP decision support system</title><author>Yang Huang ; Zisook, D. ; Yunan Chen ; Selter, M. ; Minardi, P. ; Mattison, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c925cfe3b5374a11aaf26ffe824335748c16d823e19eb8ef2ee1abd5b80adca63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Decision Support</topic><topic>Encoding</topic><topic>History</topic><topic>Medical services</topic><topic>Natural language processing</topic><topic>NLP</topic><topic>Real time systems</topic><topic>Real-time</topic><topic>Time factors</topic><topic>User Adoption</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang Huang</creatorcontrib><creatorcontrib>Zisook, D.</creatorcontrib><creatorcontrib>Yunan Chen</creatorcontrib><creatorcontrib>Selter, M.</creatorcontrib><creatorcontrib>Minardi, P.</creatorcontrib><creatorcontrib>Mattison, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang Huang</au><au>Zisook, D.</au><au>Yunan Chen</au><au>Selter, M.</au><au>Minardi, P.</au><au>Mattison, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lessons learned in improving the adoption of a real-time NLP decision support system</atitle><btitle>2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)</btitle><stitle>BIBMW</stitle><date>2011-11</date><risdate>2011</risdate><spage>643</spage><epage>648</epage><pages>643-648</pages><isbn>9781457716126</isbn><isbn>1457716127</isbn><eisbn>1457716135</eisbn><eisbn>9781457716133</eisbn><abstract>While most research in the NLP domain focuses on information accuracy, the adoption of NLP applications in healthcare extends beyond technical innovations. This study investigates the adoption issues of an NLP application in three different field sites. Using both quantitative log analysis and qualitative user interviews, we identified four main factors that affect NLP adoption: organizational culture and support, system usability, information quality and system reliability. These factors must be considered to ensure successful adoption of NLP applications that provide real-time decision support in a clinical care setting.</abstract><pub>IEEE</pub><doi>10.1109/BIBMW.2011.6112446</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457716126 |
ispartof | 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), 2011, p.643-648 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6112446 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Decision Support Encoding History Medical services Natural language processing NLP Real time systems Real-time Time factors User Adoption |
title | Lessons learned in improving the adoption of a real-time NLP decision support system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lessons%20learned%20in%20improving%20the%20adoption%20of%20a%20real-time%20NLP%20decision%20support%20system&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20Workshops%20(BIBMW)&rft.au=Yang%20Huang&rft.date=2011-11&rft.spage=643&rft.epage=648&rft.pages=643-648&rft.isbn=9781457716126&rft.isbn_list=1457716127&rft_id=info:doi/10.1109/BIBMW.2011.6112446&rft_dat=%3Cieee_6IE%3E6112446%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457716135&rft.eisbn_list=9781457716133&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6112446&rfr_iscdi=true |