Semi-automatic epilepsy spike detection from EEG signal using Genetic Algorithm and Wavelet transform

A novel algorithm is proposed for identifying epileptic features in electroencephalograph (EEG) signals automatically. The proposed algorithm is based on the combination of the Genetic Algorithm (GA) and the Wavelet transform. Optimal Wavelet basis functions that adapt the spikes of the EEG signal a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haydari, Z., Yanqing Zhang, Soltanian-Zadeh, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 638
container_issue
container_start_page 635
container_title
container_volume
creator Haydari, Z.
Yanqing Zhang
Soltanian-Zadeh, H.
description A novel algorithm is proposed for identifying epileptic features in electroencephalograph (EEG) signals automatically. The proposed algorithm is based on the combination of the Genetic Algorithm (GA) and the Wavelet transform. Optimal Wavelet basis functions that adapt the spikes of the EEG signal are first designed using GA. Then they are used as matched filters to identify the spikes related to seizure activity from the EEG recordings using Wavelet transform and a threshold-based estimation method. The method can estimate the number and the location of epileptic spikes in an EEG signal very fast and almost in real time. Hence, it is suitable for data mining of EEG recordings of epileptic patients for fundamental studies of epilepsy, prediction of seizures, and treatment of epilepsy. We have applied and evaluated the method using different samples of real clinical EEG data of epileptic patients, where it has shown a very high sensitivity (more than 90%) and selectivity (more than 90%).
doi_str_mv 10.1109/BIBMW.2011.6112443
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6112443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6112443</ieee_id><sourcerecordid>6112443</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3d0966f4a51a39ff174a095331bb329b13bf1dee011c4cbec470db5e16f1ab463</originalsourceid><addsrcrecordid>eNo1kE1OwzAUhI0QElByAdj4Ail-sWPXy7YqoVIRC0BdVnbyHAz5U-wi9fYtosxmNItvpBlC7oFNAZh-XKwXL9tpxgCmEiATgl-QWxC5UiCB55ck0Wr2nzN5TZIQvthJUs6UhhuCb9j61Oxj35roS4qDb3AIBxoG_420wohl9H1H3di3dLUqaPB1Zxq6D76raYEd_mLzpu5HHz9barqKbs0PNhhpHE0XXD-2d-TKmSZgcvYJ-XhavS-f081rsV7ON6kHlceUV0xL6YTJwXDtHChhmM45B2t5pi1w66BCPM0tRWmxFIpVNkeQDowVkk_Iw1-vR8TdMPrWjIfd-Rl-BNWvWKc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semi-automatic epilepsy spike detection from EEG signal using Genetic Algorithm and Wavelet transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haydari, Z. ; Yanqing Zhang ; Soltanian-Zadeh, H.</creator><creatorcontrib>Haydari, Z. ; Yanqing Zhang ; Soltanian-Zadeh, H.</creatorcontrib><description>A novel algorithm is proposed for identifying epileptic features in electroencephalograph (EEG) signals automatically. The proposed algorithm is based on the combination of the Genetic Algorithm (GA) and the Wavelet transform. Optimal Wavelet basis functions that adapt the spikes of the EEG signal are first designed using GA. Then they are used as matched filters to identify the spikes related to seizure activity from the EEG recordings using Wavelet transform and a threshold-based estimation method. The method can estimate the number and the location of epileptic spikes in an EEG signal very fast and almost in real time. Hence, it is suitable for data mining of EEG recordings of epileptic patients for fundamental studies of epilepsy, prediction of seizures, and treatment of epilepsy. We have applied and evaluated the method using different samples of real clinical EEG data of epileptic patients, where it has shown a very high sensitivity (more than 90%) and selectivity (more than 90%).</description><identifier>ISBN: 9781457716126</identifier><identifier>ISBN: 1457716127</identifier><identifier>EISBN: 1457716135</identifier><identifier>EISBN: 9781457716133</identifier><identifier>DOI: 10.1109/BIBMW.2011.6112443</identifier><language>eng</language><publisher>IEEE</publisher><subject>EEG ; Electroencephalography ; Epilepsy ; genetic algorithm ; Genetic algorithms ; Sensitivity ; Transient analysis ; wavelet ; Wavelet transforms</subject><ispartof>2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), 2011, p.635-638</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6112443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6112443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haydari, Z.</creatorcontrib><creatorcontrib>Yanqing Zhang</creatorcontrib><creatorcontrib>Soltanian-Zadeh, H.</creatorcontrib><title>Semi-automatic epilepsy spike detection from EEG signal using Genetic Algorithm and Wavelet transform</title><title>2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)</title><addtitle>BIBMW</addtitle><description>A novel algorithm is proposed for identifying epileptic features in electroencephalograph (EEG) signals automatically. The proposed algorithm is based on the combination of the Genetic Algorithm (GA) and the Wavelet transform. Optimal Wavelet basis functions that adapt the spikes of the EEG signal are first designed using GA. Then they are used as matched filters to identify the spikes related to seizure activity from the EEG recordings using Wavelet transform and a threshold-based estimation method. The method can estimate the number and the location of epileptic spikes in an EEG signal very fast and almost in real time. Hence, it is suitable for data mining of EEG recordings of epileptic patients for fundamental studies of epilepsy, prediction of seizures, and treatment of epilepsy. We have applied and evaluated the method using different samples of real clinical EEG data of epileptic patients, where it has shown a very high sensitivity (more than 90%) and selectivity (more than 90%).</description><subject>EEG</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Sensitivity</subject><subject>Transient analysis</subject><subject>wavelet</subject><subject>Wavelet transforms</subject><isbn>9781457716126</isbn><isbn>1457716127</isbn><isbn>1457716135</isbn><isbn>9781457716133</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1OwzAUhI0QElByAdj4Ail-sWPXy7YqoVIRC0BdVnbyHAz5U-wi9fYtosxmNItvpBlC7oFNAZh-XKwXL9tpxgCmEiATgl-QWxC5UiCB55ck0Wr2nzN5TZIQvthJUs6UhhuCb9j61Oxj35roS4qDb3AIBxoG_420wohl9H1H3di3dLUqaPB1Zxq6D76raYEd_mLzpu5HHz9barqKbs0PNhhpHE0XXD-2d-TKmSZgcvYJ-XhavS-f081rsV7ON6kHlceUV0xL6YTJwXDtHChhmM45B2t5pi1w66BCPM0tRWmxFIpVNkeQDowVkk_Iw1-vR8TdMPrWjIfd-Rl-BNWvWKc</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Haydari, Z.</creator><creator>Yanqing Zhang</creator><creator>Soltanian-Zadeh, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Semi-automatic epilepsy spike detection from EEG signal using Genetic Algorithm and Wavelet transform</title><author>Haydari, Z. ; Yanqing Zhang ; Soltanian-Zadeh, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3d0966f4a51a39ff174a095331bb329b13bf1dee011c4cbec470db5e16f1ab463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>EEG</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Sensitivity</topic><topic>Transient analysis</topic><topic>wavelet</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Haydari, Z.</creatorcontrib><creatorcontrib>Yanqing Zhang</creatorcontrib><creatorcontrib>Soltanian-Zadeh, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haydari, Z.</au><au>Yanqing Zhang</au><au>Soltanian-Zadeh, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semi-automatic epilepsy spike detection from EEG signal using Genetic Algorithm and Wavelet transform</atitle><btitle>2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)</btitle><stitle>BIBMW</stitle><date>2011-11</date><risdate>2011</risdate><spage>635</spage><epage>638</epage><pages>635-638</pages><isbn>9781457716126</isbn><isbn>1457716127</isbn><eisbn>1457716135</eisbn><eisbn>9781457716133</eisbn><abstract>A novel algorithm is proposed for identifying epileptic features in electroencephalograph (EEG) signals automatically. The proposed algorithm is based on the combination of the Genetic Algorithm (GA) and the Wavelet transform. Optimal Wavelet basis functions that adapt the spikes of the EEG signal are first designed using GA. Then they are used as matched filters to identify the spikes related to seizure activity from the EEG recordings using Wavelet transform and a threshold-based estimation method. The method can estimate the number and the location of epileptic spikes in an EEG signal very fast and almost in real time. Hence, it is suitable for data mining of EEG recordings of epileptic patients for fundamental studies of epilepsy, prediction of seizures, and treatment of epilepsy. We have applied and evaluated the method using different samples of real clinical EEG data of epileptic patients, where it has shown a very high sensitivity (more than 90%) and selectivity (more than 90%).</abstract><pub>IEEE</pub><doi>10.1109/BIBMW.2011.6112443</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457716126
ispartof 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), 2011, p.635-638
issn
language eng
recordid cdi_ieee_primary_6112443
source IEEE Electronic Library (IEL) Conference Proceedings
subjects EEG
Electroencephalography
Epilepsy
genetic algorithm
Genetic algorithms
Sensitivity
Transient analysis
wavelet
Wavelet transforms
title Semi-automatic epilepsy spike detection from EEG signal using Genetic Algorithm and Wavelet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semi-automatic%20epilepsy%20spike%20detection%20from%20EEG%20signal%20using%20Genetic%20Algorithm%20and%20Wavelet%20transform&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20Workshops%20(BIBMW)&rft.au=Haydari,%20Z.&rft.date=2011-11&rft.spage=635&rft.epage=638&rft.pages=635-638&rft.isbn=9781457716126&rft.isbn_list=1457716127&rft_id=info:doi/10.1109/BIBMW.2011.6112443&rft_dat=%3Cieee_6IE%3E6112443%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457716135&rft.eisbn_list=9781457716133&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6112443&rfr_iscdi=true