Hardware simulation of yeast glycolytic oscillations

This paper presents the design of a hardware simulator of biological processes described by chemical-kinetic equations. The simulator is made up of processing elements that use floating point arithmetic and a pipeline architecture. Due to its compact design, several processing elements can be synthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Duarte, J. E., Velasco-Medina, J., Moreno, P. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue
container_start_page 396
container_title
container_volume
creator Duarte, J. E.
Velasco-Medina, J.
Moreno, P. A.
description This paper presents the design of a hardware simulator of biological processes described by chemical-kinetic equations. The simulator is made up of processing elements that use floating point arithmetic and a pipeline architecture. Due to its compact design, several processing elements can be synthesized into a single FPGA to create a multiprocessing architecture allowing the parallel simulation of several biological processes that are executed simultaneously, and thus, reducing the execution time with respect to software simulations. The design was verified simulating two models: yeast glycolytic oscillations and induced glycolytic oscillations between two cells. The obtained results prove that the architecture designed is suitable to simulate complex biological processes in lower times than in software simulations.
doi_str_mv 10.1109/BIBMW.2011.6112404
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6112404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6112404</ieee_id><sourcerecordid>6112404</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a99526ffff8c91f0681deb6905ed4a74577a06eaf1278ba77d4d6d41e6abe1c73</originalsourceid><addsrcrecordid>eNo1j0FLw0AUhFdEUGv-gF7yBxL3bXbf7h5tUVuo9FLxWF6yL7KSGslGJP_eSut3GYaBYUaIW5AlgPT389X85a1UEqBEAKWlPhPXoI21gFCZc5F56_69wkuRpfQhDyA66-FK6CUN4YcGzlPcf3c0xv4z79t8Ykpj_t5NTd9NY2zyPjWxO-bpRly01CXOTjoTr0-P28WyWG-eV4uHdRHBmrEg743C9oBrPLQSHQSu0UvDQZP9W0USmVpQ1tVkbdABgwZGqhkaW83E3bE3MvPua4h7Gqbd6Wj1C5PcR4A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hardware simulation of yeast glycolytic oscillations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Duarte, J. E. ; Velasco-Medina, J. ; Moreno, P. A.</creator><creatorcontrib>Duarte, J. E. ; Velasco-Medina, J. ; Moreno, P. A.</creatorcontrib><description>This paper presents the design of a hardware simulator of biological processes described by chemical-kinetic equations. The simulator is made up of processing elements that use floating point arithmetic and a pipeline architecture. Due to its compact design, several processing elements can be synthesized into a single FPGA to create a multiprocessing architecture allowing the parallel simulation of several biological processes that are executed simultaneously, and thus, reducing the execution time with respect to software simulations. The design was verified simulating two models: yeast glycolytic oscillations and induced glycolytic oscillations between two cells. The obtained results prove that the architecture designed is suitable to simulate complex biological processes in lower times than in software simulations.</description><identifier>ISBN: 9781457716126</identifier><identifier>ISBN: 1457716127</identifier><identifier>EISBN: 1457716135</identifier><identifier>EISBN: 9781457716133</identifier><identifier>DOI: 10.1109/BIBMW.2011.6112404</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological processes ; Biological system modeling ; chemical-kinetic simulations ; Computer architecture ; Field programmable gate arrays ; FPGA ; glycolytic oscillations ; Hardware ; hardware simulation ; Mathematical model ; Oscillators</subject><ispartof>2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), 2011, p.396-399</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6112404$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6112404$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duarte, J. E.</creatorcontrib><creatorcontrib>Velasco-Medina, J.</creatorcontrib><creatorcontrib>Moreno, P. A.</creatorcontrib><title>Hardware simulation of yeast glycolytic oscillations</title><title>2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)</title><addtitle>BIBMW</addtitle><description>This paper presents the design of a hardware simulator of biological processes described by chemical-kinetic equations. The simulator is made up of processing elements that use floating point arithmetic and a pipeline architecture. Due to its compact design, several processing elements can be synthesized into a single FPGA to create a multiprocessing architecture allowing the parallel simulation of several biological processes that are executed simultaneously, and thus, reducing the execution time with respect to software simulations. The design was verified simulating two models: yeast glycolytic oscillations and induced glycolytic oscillations between two cells. The obtained results prove that the architecture designed is suitable to simulate complex biological processes in lower times than in software simulations.</description><subject>Biological processes</subject><subject>Biological system modeling</subject><subject>chemical-kinetic simulations</subject><subject>Computer architecture</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>glycolytic oscillations</subject><subject>Hardware</subject><subject>hardware simulation</subject><subject>Mathematical model</subject><subject>Oscillators</subject><isbn>9781457716126</isbn><isbn>1457716127</isbn><isbn>1457716135</isbn><isbn>9781457716133</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0FLw0AUhFdEUGv-gF7yBxL3bXbf7h5tUVuo9FLxWF6yL7KSGslGJP_eSut3GYaBYUaIW5AlgPT389X85a1UEqBEAKWlPhPXoI21gFCZc5F56_69wkuRpfQhDyA66-FK6CUN4YcGzlPcf3c0xv4z79t8Ykpj_t5NTd9NY2zyPjWxO-bpRly01CXOTjoTr0-P28WyWG-eV4uHdRHBmrEg743C9oBrPLQSHQSu0UvDQZP9W0USmVpQ1tVkbdABgwZGqhkaW83E3bE3MvPua4h7Gqbd6Wj1C5PcR4A</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Duarte, J. E.</creator><creator>Velasco-Medina, J.</creator><creator>Moreno, P. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Hardware simulation of yeast glycolytic oscillations</title><author>Duarte, J. E. ; Velasco-Medina, J. ; Moreno, P. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a99526ffff8c91f0681deb6905ed4a74577a06eaf1278ba77d4d6d41e6abe1c73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological processes</topic><topic>Biological system modeling</topic><topic>chemical-kinetic simulations</topic><topic>Computer architecture</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>glycolytic oscillations</topic><topic>Hardware</topic><topic>hardware simulation</topic><topic>Mathematical model</topic><topic>Oscillators</topic><toplevel>online_resources</toplevel><creatorcontrib>Duarte, J. E.</creatorcontrib><creatorcontrib>Velasco-Medina, J.</creatorcontrib><creatorcontrib>Moreno, P. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duarte, J. E.</au><au>Velasco-Medina, J.</au><au>Moreno, P. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hardware simulation of yeast glycolytic oscillations</atitle><btitle>2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)</btitle><stitle>BIBMW</stitle><date>2011-11</date><risdate>2011</risdate><spage>396</spage><epage>399</epage><pages>396-399</pages><isbn>9781457716126</isbn><isbn>1457716127</isbn><eisbn>1457716135</eisbn><eisbn>9781457716133</eisbn><abstract>This paper presents the design of a hardware simulator of biological processes described by chemical-kinetic equations. The simulator is made up of processing elements that use floating point arithmetic and a pipeline architecture. Due to its compact design, several processing elements can be synthesized into a single FPGA to create a multiprocessing architecture allowing the parallel simulation of several biological processes that are executed simultaneously, and thus, reducing the execution time with respect to software simulations. The design was verified simulating two models: yeast glycolytic oscillations and induced glycolytic oscillations between two cells. The obtained results prove that the architecture designed is suitable to simulate complex biological processes in lower times than in software simulations.</abstract><pub>IEEE</pub><doi>10.1109/BIBMW.2011.6112404</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457716126
ispartof 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), 2011, p.396-399
issn
language eng
recordid cdi_ieee_primary_6112404
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological processes
Biological system modeling
chemical-kinetic simulations
Computer architecture
Field programmable gate arrays
FPGA
glycolytic oscillations
Hardware
hardware simulation
Mathematical model
Oscillators
title Hardware simulation of yeast glycolytic oscillations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hardware%20simulation%20of%20yeast%20glycolytic%20oscillations&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20Workshops%20(BIBMW)&rft.au=Duarte,%20J.%20E.&rft.date=2011-11&rft.spage=396&rft.epage=399&rft.pages=396-399&rft.isbn=9781457716126&rft.isbn_list=1457716127&rft_id=info:doi/10.1109/BIBMW.2011.6112404&rft_dat=%3Cieee_6IE%3E6112404%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457716135&rft.eisbn_list=9781457716133&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6112404&rfr_iscdi=true