Using tag similarity in SVD-based recommendation systems

Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Osmanli, O. N., Toroslu, I. H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Osmanli, O. N.
Toroslu, I. H.
description Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to the results of these analyses. Parallel to the need of companies, researchers are investigating different methodologies to analyze data more accurately with high performance. In this paper, we adopted free-formatted text-based tags into traditional 2-Dimensional SVD approach. We analysed the effect of different tag similarity techniques to the 3-Dimensional SVD recommendation performance. Our experiments illustrated that, tags increase the performance to some extent. The more similar tags means, the more accurate predictions.
doi_str_mv 10.1109/ICAICT.2011.6111034
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6111034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6111034</ieee_id><sourcerecordid>6111034</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f48fed5a1fb54227fe0df1a929acbe73a23df8254cb8ea28a364efda42b3b3353</originalsourceid><addsrcrecordid>eNo1j81OwzAQhI0QElDyBL34BRK8tpPYRxR-WqkSB9Jeq3W8royaFMW55O2JRJnLaL7DaIaxNYgCQNjnbfOybdpCCoCiggUpfcMyWxuoQBptlFC37PE_ANyzLKVvsaiStdH2gZl9isOJT3jiKfbxjGOcZh4H_nV4zR0m8nyk7tL3NHic4mXgaU4T9emJ3QU8J8quvmLt-1vbbPLd58cya5dHK6Y8aBPIlwjBlVrKOpDwAdBKi52jWqFUPhhZ6s4ZQmlQVZqCRy2dckqVasXWf7WRiI4_Y-xxnI_Xr-oXjbtIrQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using tag similarity in SVD-based recommendation systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Osmanli, O. N. ; Toroslu, I. H.</creator><creatorcontrib>Osmanli, O. N. ; Toroslu, I. H.</creatorcontrib><description>Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to the results of these analyses. Parallel to the need of companies, researchers are investigating different methodologies to analyze data more accurately with high performance. In this paper, we adopted free-formatted text-based tags into traditional 2-Dimensional SVD approach. We analysed the effect of different tag similarity techniques to the 3-Dimensional SVD recommendation performance. Our experiments illustrated that, tags increase the performance to some extent. The more similar tags means, the more accurate predictions.</description><identifier>ISBN: 1612848311</identifier><identifier>ISBN: 9781612848310</identifier><identifier>EISBN: 9781612848303</identifier><identifier>EISBN: 1612848303</identifier><identifier>EISBN: 161284832X</identifier><identifier>EISBN: 9781612848327</identifier><identifier>DOI: 10.1109/ICAICT.2011.6111034</identifier><language>eng</language><publisher>IEEE</publisher><subject>Java ; Linear approximation ; Matrix decomposition ; Motion pictures ; Ontologies ; Recommendation Systems ; Recommender systems ; Singular value decomposition ; Tag Similarity</subject><ispartof>2011 5th International Conference on Application of Information and Communication Technologies (AICT), 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6111034$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6111034$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Osmanli, O. N.</creatorcontrib><creatorcontrib>Toroslu, I. H.</creatorcontrib><title>Using tag similarity in SVD-based recommendation systems</title><title>2011 5th International Conference on Application of Information and Communication Technologies (AICT)</title><addtitle>ICAICT</addtitle><description>Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to the results of these analyses. Parallel to the need of companies, researchers are investigating different methodologies to analyze data more accurately with high performance. In this paper, we adopted free-formatted text-based tags into traditional 2-Dimensional SVD approach. We analysed the effect of different tag similarity techniques to the 3-Dimensional SVD recommendation performance. Our experiments illustrated that, tags increase the performance to some extent. The more similar tags means, the more accurate predictions.</description><subject>Java</subject><subject>Linear approximation</subject><subject>Matrix decomposition</subject><subject>Motion pictures</subject><subject>Ontologies</subject><subject>Recommendation Systems</subject><subject>Recommender systems</subject><subject>Singular value decomposition</subject><subject>Tag Similarity</subject><isbn>1612848311</isbn><isbn>9781612848310</isbn><isbn>9781612848303</isbn><isbn>1612848303</isbn><isbn>161284832X</isbn><isbn>9781612848327</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81OwzAQhI0QElDyBL34BRK8tpPYRxR-WqkSB9Jeq3W8royaFMW55O2JRJnLaL7DaIaxNYgCQNjnbfOybdpCCoCiggUpfcMyWxuoQBptlFC37PE_ANyzLKVvsaiStdH2gZl9isOJT3jiKfbxjGOcZh4H_nV4zR0m8nyk7tL3NHic4mXgaU4T9emJ3QU8J8quvmLt-1vbbPLd58cya5dHK6Y8aBPIlwjBlVrKOpDwAdBKi52jWqFUPhhZ6s4ZQmlQVZqCRy2dckqVasXWf7WRiI4_Y-xxnI_Xr-oXjbtIrQ</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Osmanli, O. N.</creator><creator>Toroslu, I. H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Using tag similarity in SVD-based recommendation systems</title><author>Osmanli, O. N. ; Toroslu, I. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f48fed5a1fb54227fe0df1a929acbe73a23df8254cb8ea28a364efda42b3b3353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Java</topic><topic>Linear approximation</topic><topic>Matrix decomposition</topic><topic>Motion pictures</topic><topic>Ontologies</topic><topic>Recommendation Systems</topic><topic>Recommender systems</topic><topic>Singular value decomposition</topic><topic>Tag Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Osmanli, O. N.</creatorcontrib><creatorcontrib>Toroslu, I. H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Osmanli, O. N.</au><au>Toroslu, I. H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using tag similarity in SVD-based recommendation systems</atitle><btitle>2011 5th International Conference on Application of Information and Communication Technologies (AICT)</btitle><stitle>ICAICT</stitle><date>2011-10</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>1612848311</isbn><isbn>9781612848310</isbn><eisbn>9781612848303</eisbn><eisbn>1612848303</eisbn><eisbn>161284832X</eisbn><eisbn>9781612848327</eisbn><abstract>Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to the results of these analyses. Parallel to the need of companies, researchers are investigating different methodologies to analyze data more accurately with high performance. In this paper, we adopted free-formatted text-based tags into traditional 2-Dimensional SVD approach. We analysed the effect of different tag similarity techniques to the 3-Dimensional SVD recommendation performance. Our experiments illustrated that, tags increase the performance to some extent. The more similar tags means, the more accurate predictions.</abstract><pub>IEEE</pub><doi>10.1109/ICAICT.2011.6111034</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612848311
ispartof 2011 5th International Conference on Application of Information and Communication Technologies (AICT), 2011, p.1-4
issn
language eng
recordid cdi_ieee_primary_6111034
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Java
Linear approximation
Matrix decomposition
Motion pictures
Ontologies
Recommendation Systems
Recommender systems
Singular value decomposition
Tag Similarity
title Using tag similarity in SVD-based recommendation systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20tag%20similarity%20in%20SVD-based%20recommendation%20systems&rft.btitle=2011%205th%20International%20Conference%20on%20Application%20of%20Information%20and%20Communication%20Technologies%20(AICT)&rft.au=Osmanli,%20O.%20N.&rft.date=2011-10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=1612848311&rft.isbn_list=9781612848310&rft_id=info:doi/10.1109/ICAICT.2011.6111034&rft_dat=%3Cieee_6IE%3E6111034%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612848303&rft.eisbn_list=1612848303&rft.eisbn_list=161284832X&rft.eisbn_list=9781612848327&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6111034&rfr_iscdi=true