A super-resolution method based on local sparse and global gradient

Super-resolution methods based on sparse easily lead to over-smoothing at the edges of reconstructed image. A novel super-resolution method based on local sparse and global gradient is proposed to solve the problem. First, it represents the input low-resolution (LR) image patches with sparse coeffic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kebin Huang, Ruimin Hu, Zhen Han, Feng Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue
container_start_page 261
container_title
container_volume
creator Kebin Huang
Ruimin Hu
Zhen Han
Feng Wang
description Super-resolution methods based on sparse easily lead to over-smoothing at the edges of reconstructed image. A novel super-resolution method based on local sparse and global gradient is proposed to solve the problem. First, it represents the input low-resolution (LR) image patches with sparse coefficients and LR over-complete dictionary. Then it maps the coefficients to high resolution (HR) over-complete dictionary and reconstructs the HR texture. At last, it enhances the main edge using global natural image statistics' prior information and merges it together with the texture. By using the local sparse representation and global gradient transformation, it can obtain the result image with clean texture and clear edge. Experimental results validate the proposed method, both in subjective and objective quality.
doi_str_mv 10.1109/IASP.2011.6109043
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6109043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6109043</ieee_id><sourcerecordid>6109043</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a446ecd6be486938be2f6acf087f7e189e8bc6580a51c083663c40b738e8002c3</originalsourceid><addsrcrecordid>eNotkE9LxDAUxCMquK79AOIlX6D1JWnTl2Mp_llYUHDvS5K-rpVuW5LuwW9vwc5l-A3DHIaxRwGZEGCed9XXZyZBiEwvCLm6YvdCC4k5osBrlpgSVy6NvGEbKQqdLn24Y0mMP7BIayMBN6yueLxMFNJAcewvczcO_Ezz99hwZyM1fOF-9LbncbIhErdDw0_96JbkFGzT0TA_sNvW9pGS1bfs8PpyqN_T_cfbrq72aWdgTm2ea_KNdpSjNgodyVZb3wKWbUkCDaHzukCwhfCASmvlc3ClQkIA6dWWPf3PdkR0nEJ3tuH3uF6g_gCIvEzA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A super-resolution method based on local sparse and global gradient</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kebin Huang ; Ruimin Hu ; Zhen Han ; Feng Wang</creator><creatorcontrib>Kebin Huang ; Ruimin Hu ; Zhen Han ; Feng Wang</creatorcontrib><description>Super-resolution methods based on sparse easily lead to over-smoothing at the edges of reconstructed image. A novel super-resolution method based on local sparse and global gradient is proposed to solve the problem. First, it represents the input low-resolution (LR) image patches with sparse coefficients and LR over-complete dictionary. Then it maps the coefficients to high resolution (HR) over-complete dictionary and reconstructs the HR texture. At last, it enhances the main edge using global natural image statistics' prior information and merges it together with the texture. By using the local sparse representation and global gradient transformation, it can obtain the result image with clean texture and clear edge. Experimental results validate the proposed method, both in subjective and objective quality.</description><identifier>ISSN: 2156-0110</identifier><identifier>ISBN: 9781612848792</identifier><identifier>ISBN: 1612848796</identifier><identifier>EISBN: 1612848818</identifier><identifier>EISBN: 9781612848815</identifier><identifier>DOI: 10.1109/IASP.2011.6109043</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dictionaries ; global gradient ; Image edge detection ; Image reconstruction ; Image resolution ; Interpolation ; Signal resolution ; sparse representation ; super-resolution ; Training</subject><ispartof>2011 International Conference on Image Analysis and Signal Processing, 2011, p.261-265</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6109043$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6109043$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kebin Huang</creatorcontrib><creatorcontrib>Ruimin Hu</creatorcontrib><creatorcontrib>Zhen Han</creatorcontrib><creatorcontrib>Feng Wang</creatorcontrib><title>A super-resolution method based on local sparse and global gradient</title><title>2011 International Conference on Image Analysis and Signal Processing</title><addtitle>IASP</addtitle><description>Super-resolution methods based on sparse easily lead to over-smoothing at the edges of reconstructed image. A novel super-resolution method based on local sparse and global gradient is proposed to solve the problem. First, it represents the input low-resolution (LR) image patches with sparse coefficients and LR over-complete dictionary. Then it maps the coefficients to high resolution (HR) over-complete dictionary and reconstructs the HR texture. At last, it enhances the main edge using global natural image statistics' prior information and merges it together with the texture. By using the local sparse representation and global gradient transformation, it can obtain the result image with clean texture and clear edge. Experimental results validate the proposed method, both in subjective and objective quality.</description><subject>Dictionaries</subject><subject>global gradient</subject><subject>Image edge detection</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Interpolation</subject><subject>Signal resolution</subject><subject>sparse representation</subject><subject>super-resolution</subject><subject>Training</subject><issn>2156-0110</issn><isbn>9781612848792</isbn><isbn>1612848796</isbn><isbn>1612848818</isbn><isbn>9781612848815</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE9LxDAUxCMquK79AOIlX6D1JWnTl2Mp_llYUHDvS5K-rpVuW5LuwW9vwc5l-A3DHIaxRwGZEGCed9XXZyZBiEwvCLm6YvdCC4k5osBrlpgSVy6NvGEbKQqdLn24Y0mMP7BIayMBN6yueLxMFNJAcewvczcO_Ezz99hwZyM1fOF-9LbncbIhErdDw0_96JbkFGzT0TA_sNvW9pGS1bfs8PpyqN_T_cfbrq72aWdgTm2ea_KNdpSjNgodyVZb3wKWbUkCDaHzukCwhfCASmvlc3ClQkIA6dWWPf3PdkR0nEJ3tuH3uF6g_gCIvEzA</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Kebin Huang</creator><creator>Ruimin Hu</creator><creator>Zhen Han</creator><creator>Feng Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>A super-resolution method based on local sparse and global gradient</title><author>Kebin Huang ; Ruimin Hu ; Zhen Han ; Feng Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a446ecd6be486938be2f6acf087f7e189e8bc6580a51c083663c40b738e8002c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Dictionaries</topic><topic>global gradient</topic><topic>Image edge detection</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Interpolation</topic><topic>Signal resolution</topic><topic>sparse representation</topic><topic>super-resolution</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kebin Huang</creatorcontrib><creatorcontrib>Ruimin Hu</creatorcontrib><creatorcontrib>Zhen Han</creatorcontrib><creatorcontrib>Feng Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kebin Huang</au><au>Ruimin Hu</au><au>Zhen Han</au><au>Feng Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A super-resolution method based on local sparse and global gradient</atitle><btitle>2011 International Conference on Image Analysis and Signal Processing</btitle><stitle>IASP</stitle><date>2011-10</date><risdate>2011</risdate><spage>261</spage><epage>265</epage><pages>261-265</pages><issn>2156-0110</issn><isbn>9781612848792</isbn><isbn>1612848796</isbn><eisbn>1612848818</eisbn><eisbn>9781612848815</eisbn><abstract>Super-resolution methods based on sparse easily lead to over-smoothing at the edges of reconstructed image. A novel super-resolution method based on local sparse and global gradient is proposed to solve the problem. First, it represents the input low-resolution (LR) image patches with sparse coefficients and LR over-complete dictionary. Then it maps the coefficients to high resolution (HR) over-complete dictionary and reconstructs the HR texture. At last, it enhances the main edge using global natural image statistics' prior information and merges it together with the texture. By using the local sparse representation and global gradient transformation, it can obtain the result image with clean texture and clear edge. Experimental results validate the proposed method, both in subjective and objective quality.</abstract><pub>IEEE</pub><doi>10.1109/IASP.2011.6109043</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-0110
ispartof 2011 International Conference on Image Analysis and Signal Processing, 2011, p.261-265
issn 2156-0110
language eng
recordid cdi_ieee_primary_6109043
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Dictionaries
global gradient
Image edge detection
Image reconstruction
Image resolution
Interpolation
Signal resolution
sparse representation
super-resolution
Training
title A super-resolution method based on local sparse and global gradient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20super-resolution%20method%20based%20on%20local%20sparse%20and%20global%20gradient&rft.btitle=2011%20International%20Conference%20on%20Image%20Analysis%20and%20Signal%20Processing&rft.au=Kebin%20Huang&rft.date=2011-10&rft.spage=261&rft.epage=265&rft.pages=261-265&rft.issn=2156-0110&rft.isbn=9781612848792&rft.isbn_list=1612848796&rft_id=info:doi/10.1109/IASP.2011.6109043&rft_dat=%3Cieee_6IE%3E6109043%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612848818&rft.eisbn_list=9781612848815&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6109043&rfr_iscdi=true