Lyapunov method for the controlling of the two wheels inverted pendulum

In this paper, a nonlinear controller for the stabilization of the two wheels inverted pendulum is presented. Firstly, by a suitable partial feedback linearization that allows to linearize only the actuated coordinate system, we proceed to find a function Lyapunov in conjunction with LaSalle's...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gutierrez Frias, Oscar Octavio
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Gutierrez Frias, Oscar Octavio
description In this paper, a nonlinear controller for the stabilization of the two wheels inverted pendulum is presented. Firstly, by a suitable partial feedback linearization that allows to linearize only the actuated coordinate system, we proceed to find a function Lyapunov in conjunction with LaSalle's invariance principle. Based on this candidate function, we derive a stabilizing controller in such a way that the closed-loop system is locally asymptotically stable around its unstable equilibrium point, with a computable domain attraction.
doi_str_mv 10.1109/ICEEE.2011.6106627
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6106627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6106627</ieee_id><sourcerecordid>6106627</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fb0c73e79727a7f97c7ec1c4fa27421c1ebbe454fb314f7d444c2b30983955963</originalsourceid><addsrcrecordid>eNpFj81Kw0AUhUdEUGtfQDfzAolzZyZzO0sJsS0E3HRfkskdE0kyIT8tfXtFC57N4TuLDw5jzyBiAGFf92mWZbEUALEBYYzEG_YIOkEEAQpv_wHEPVtP05f4iTEWNvaBbfNLMSx9OPGO5jpU3IeRzzVxF_p5DG3b9J88-N9pPgd-ronaiTf9icaZKj5QXy3t0j2xO1-0E62vvWKH9-yQ7qL8Y7tP3_KosWKOfCkcKkKLEgv0Fh2SA6d9IVFLcEBlSTrRvlSgPVZaaydLJexG2SSxRq3Yy5-2IaLjMDZdMV6O19_qG7ejTIs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lyapunov method for the controlling of the two wheels inverted pendulum</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gutierrez Frias, Oscar Octavio</creator><creatorcontrib>Gutierrez Frias, Oscar Octavio</creatorcontrib><description>In this paper, a nonlinear controller for the stabilization of the two wheels inverted pendulum is presented. Firstly, by a suitable partial feedback linearization that allows to linearize only the actuated coordinate system, we proceed to find a function Lyapunov in conjunction with LaSalle's invariance principle. Based on this candidate function, we derive a stabilizing controller in such a way that the closed-loop system is locally asymptotically stable around its unstable equilibrium point, with a computable domain attraction.</description><identifier>ISBN: 1457710110</identifier><identifier>ISBN: 9781457710117</identifier><identifier>EISBN: 1457710137</identifier><identifier>EISBN: 1457710129</identifier><identifier>EISBN: 9781457710131</identifier><identifier>EISBN: 9781457710124</identifier><identifier>DOI: 10.1109/ICEEE.2011.6106627</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Lyapunov Method ; Lyapunov methods ; Mathematical model ; Mobile robots ; Non-Linear Control ; Robustness ; Two Wheels Inverted Pendulum ; Underactuated System ; Wheels</subject><ispartof>2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6106627$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6106627$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gutierrez Frias, Oscar Octavio</creatorcontrib><title>Lyapunov method for the controlling of the two wheels inverted pendulum</title><title>2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control</title><addtitle>ICEEE</addtitle><description>In this paper, a nonlinear controller for the stabilization of the two wheels inverted pendulum is presented. Firstly, by a suitable partial feedback linearization that allows to linearize only the actuated coordinate system, we proceed to find a function Lyapunov in conjunction with LaSalle's invariance principle. Based on this candidate function, we derive a stabilizing controller in such a way that the closed-loop system is locally asymptotically stable around its unstable equilibrium point, with a computable domain attraction.</description><subject>Equations</subject><subject>Lyapunov Method</subject><subject>Lyapunov methods</subject><subject>Mathematical model</subject><subject>Mobile robots</subject><subject>Non-Linear Control</subject><subject>Robustness</subject><subject>Two Wheels Inverted Pendulum</subject><subject>Underactuated System</subject><subject>Wheels</subject><isbn>1457710110</isbn><isbn>9781457710117</isbn><isbn>1457710137</isbn><isbn>1457710129</isbn><isbn>9781457710131</isbn><isbn>9781457710124</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81Kw0AUhUdEUGtfQDfzAolzZyZzO0sJsS0E3HRfkskdE0kyIT8tfXtFC57N4TuLDw5jzyBiAGFf92mWZbEUALEBYYzEG_YIOkEEAQpv_wHEPVtP05f4iTEWNvaBbfNLMSx9OPGO5jpU3IeRzzVxF_p5DG3b9J88-N9pPgd-ronaiTf9icaZKj5QXy3t0j2xO1-0E62vvWKH9-yQ7qL8Y7tP3_KosWKOfCkcKkKLEgv0Fh2SA6d9IVFLcEBlSTrRvlSgPVZaaydLJexG2SSxRq3Yy5-2IaLjMDZdMV6O19_qG7ejTIs</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Gutierrez Frias, Oscar Octavio</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Lyapunov method for the controlling of the two wheels inverted pendulum</title><author>Gutierrez Frias, Oscar Octavio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fb0c73e79727a7f97c7ec1c4fa27421c1ebbe454fb314f7d444c2b30983955963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Equations</topic><topic>Lyapunov Method</topic><topic>Lyapunov methods</topic><topic>Mathematical model</topic><topic>Mobile robots</topic><topic>Non-Linear Control</topic><topic>Robustness</topic><topic>Two Wheels Inverted Pendulum</topic><topic>Underactuated System</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Gutierrez Frias, Oscar Octavio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gutierrez Frias, Oscar Octavio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lyapunov method for the controlling of the two wheels inverted pendulum</atitle><btitle>2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control</btitle><stitle>ICEEE</stitle><date>2011-10</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1457710110</isbn><isbn>9781457710117</isbn><eisbn>1457710137</eisbn><eisbn>1457710129</eisbn><eisbn>9781457710131</eisbn><eisbn>9781457710124</eisbn><abstract>In this paper, a nonlinear controller for the stabilization of the two wheels inverted pendulum is presented. Firstly, by a suitable partial feedback linearization that allows to linearize only the actuated coordinate system, we proceed to find a function Lyapunov in conjunction with LaSalle's invariance principle. Based on this candidate function, we derive a stabilizing controller in such a way that the closed-loop system is locally asymptotically stable around its unstable equilibrium point, with a computable domain attraction.</abstract><pub>IEEE</pub><doi>10.1109/ICEEE.2011.6106627</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457710110
ispartof 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, 2011, p.1-5
issn
language eng
recordid cdi_ieee_primary_6106627
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
Lyapunov Method
Lyapunov methods
Mathematical model
Mobile robots
Non-Linear Control
Robustness
Two Wheels Inverted Pendulum
Underactuated System
Wheels
title Lyapunov method for the controlling of the two wheels inverted pendulum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lyapunov%20method%20for%20the%20controlling%20of%20the%20two%20wheels%20inverted%20pendulum&rft.btitle=2011%208th%20International%20Conference%20on%20Electrical%20Engineering,%20Computing%20Science%20and%20Automatic%20Control&rft.au=Gutierrez%20Frias,%20Oscar%20Octavio&rft.date=2011-10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1457710110&rft.isbn_list=9781457710117&rft_id=info:doi/10.1109/ICEEE.2011.6106627&rft_dat=%3Cieee_6IE%3E6106627%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457710137&rft.eisbn_list=1457710129&rft.eisbn_list=9781457710131&rft.eisbn_list=9781457710124&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6106627&rfr_iscdi=true