Visual categorization method with a Bag of PCA packed Keypoints
Visual categorization is one of a key function in the next generation of a driving assist system, which is expected to reduce a traffic accident. This paper proposes a high performance visual categorization method, which is based on Feature Accelerated Segment Test (FAST) feature point detectors, Hi...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 953 |
---|---|
container_issue | |
container_start_page | 950 |
container_title | |
container_volume | 2 |
creator | Okumura, S. Maeda, N. Nakata, K. Saito, K. Fukumizu, Y. Yamauchi, H. |
description | Visual categorization is one of a key function in the next generation of a driving assist system, which is expected to reduce a traffic accident. This paper proposes a high performance visual categorization method, which is based on Feature Accelerated Segment Test (FAST) feature point detectors, Histograms of Oriented Gradients (HOG) feature descriptors and Bag-of-Keypoints (BoK). Each feature descriptors were orthogonalized by applying the Principal Component Analysis (PCA) to reduce the size of dimension. As a result, our proposed method has achieved the recognition rate of 69.5% and the performance of 43.1 ms on a PC in order to categorize one object in an image into traffic related categories, i.e. pedestrians, cars, bikes, bicycles, and so on. The comparison with conventional methods will be also discussed. |
doi_str_mv | 10.1109/CISP.2011.6100330 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6100330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6100330</ieee_id><sourcerecordid>6100330</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-95486e013b4af4394ac2648b35a311c621b2e4ce04b8881717cf7327f8585e013</originalsourceid><addsrcrecordid>eNpFj81KAzEUhSMiqLUPIG7yAlPvTTKZZCV18KdYsGBxW-6kd9po2xlmIlKfXsWCZ3P4FueDI8QlwggR_HU5eZmNFCCOLAJoDUfiHI0yxmvI7fE_GHcqhn3_Bj-x1itUZ-LmNfYftJGBEq-aLn5Ris1Objmtm6X8jGktSd7SSja1nJVj2VJ456V84n3bxF3qL8RJTZueh4ceiPn93bx8zKbPD5NyPM2ih5T53DjLgLoyVBvtDQVljat0ThoxWIWVYhMYTOWcwwKLUBdaFbXLXf67G4irP21k5kXbxS11-8Xhr_4GtBVHGA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Visual categorization method with a Bag of PCA packed Keypoints</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Okumura, S. ; Maeda, N. ; Nakata, K. ; Saito, K. ; Fukumizu, Y. ; Yamauchi, H.</creator><creatorcontrib>Okumura, S. ; Maeda, N. ; Nakata, K. ; Saito, K. ; Fukumizu, Y. ; Yamauchi, H.</creatorcontrib><description>Visual categorization is one of a key function in the next generation of a driving assist system, which is expected to reduce a traffic accident. This paper proposes a high performance visual categorization method, which is based on Feature Accelerated Segment Test (FAST) feature point detectors, Histograms of Oriented Gradients (HOG) feature descriptors and Bag-of-Keypoints (BoK). Each feature descriptors were orthogonalized by applying the Principal Component Analysis (PCA) to reduce the size of dimension. As a result, our proposed method has achieved the recognition rate of 69.5% and the performance of 43.1 ms on a PC in order to categorize one object in an image into traffic related categories, i.e. pedestrians, cars, bikes, bicycles, and so on. The comparison with conventional methods will be also discussed.</description><identifier>ISBN: 1424493048</identifier><identifier>ISBN: 9781424493043</identifier><identifier>EISBN: 1424493056</identifier><identifier>EISBN: 9781424493067</identifier><identifier>EISBN: 9781424493050</identifier><identifier>EISBN: 1424493064</identifier><identifier>DOI: 10.1109/CISP.2011.6100330</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brightness ; Detectors ; FAST ; Feature extraction ; Histograms ; HOG ; PCA ; Principal component analysis ; Vectors ; Visual categorization ; Visualization</subject><ispartof>2011 4th International Congress on Image and Signal Processing, 2011, Vol.2, p.950-953</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6100330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6100330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Okumura, S.</creatorcontrib><creatorcontrib>Maeda, N.</creatorcontrib><creatorcontrib>Nakata, K.</creatorcontrib><creatorcontrib>Saito, K.</creatorcontrib><creatorcontrib>Fukumizu, Y.</creatorcontrib><creatorcontrib>Yamauchi, H.</creatorcontrib><title>Visual categorization method with a Bag of PCA packed Keypoints</title><title>2011 4th International Congress on Image and Signal Processing</title><addtitle>CISP</addtitle><description>Visual categorization is one of a key function in the next generation of a driving assist system, which is expected to reduce a traffic accident. This paper proposes a high performance visual categorization method, which is based on Feature Accelerated Segment Test (FAST) feature point detectors, Histograms of Oriented Gradients (HOG) feature descriptors and Bag-of-Keypoints (BoK). Each feature descriptors were orthogonalized by applying the Principal Component Analysis (PCA) to reduce the size of dimension. As a result, our proposed method has achieved the recognition rate of 69.5% and the performance of 43.1 ms on a PC in order to categorize one object in an image into traffic related categories, i.e. pedestrians, cars, bikes, bicycles, and so on. The comparison with conventional methods will be also discussed.</description><subject>Brightness</subject><subject>Detectors</subject><subject>FAST</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>HOG</subject><subject>PCA</subject><subject>Principal component analysis</subject><subject>Vectors</subject><subject>Visual categorization</subject><subject>Visualization</subject><isbn>1424493048</isbn><isbn>9781424493043</isbn><isbn>1424493056</isbn><isbn>9781424493067</isbn><isbn>9781424493050</isbn><isbn>1424493064</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81KAzEUhSMiqLUPIG7yAlPvTTKZZCV18KdYsGBxW-6kd9po2xlmIlKfXsWCZ3P4FueDI8QlwggR_HU5eZmNFCCOLAJoDUfiHI0yxmvI7fE_GHcqhn3_Bj-x1itUZ-LmNfYftJGBEq-aLn5Ris1Objmtm6X8jGktSd7SSja1nJVj2VJ456V84n3bxF3qL8RJTZueh4ceiPn93bx8zKbPD5NyPM2ih5T53DjLgLoyVBvtDQVljat0ThoxWIWVYhMYTOWcwwKLUBdaFbXLXf67G4irP21k5kXbxS11-8Xhr_4GtBVHGA</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Okumura, S.</creator><creator>Maeda, N.</creator><creator>Nakata, K.</creator><creator>Saito, K.</creator><creator>Fukumizu, Y.</creator><creator>Yamauchi, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Visual categorization method with a Bag of PCA packed Keypoints</title><author>Okumura, S. ; Maeda, N. ; Nakata, K. ; Saito, K. ; Fukumizu, Y. ; Yamauchi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-95486e013b4af4394ac2648b35a311c621b2e4ce04b8881717cf7327f8585e013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Brightness</topic><topic>Detectors</topic><topic>FAST</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>HOG</topic><topic>PCA</topic><topic>Principal component analysis</topic><topic>Vectors</topic><topic>Visual categorization</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Okumura, S.</creatorcontrib><creatorcontrib>Maeda, N.</creatorcontrib><creatorcontrib>Nakata, K.</creatorcontrib><creatorcontrib>Saito, K.</creatorcontrib><creatorcontrib>Fukumizu, Y.</creatorcontrib><creatorcontrib>Yamauchi, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Okumura, S.</au><au>Maeda, N.</au><au>Nakata, K.</au><au>Saito, K.</au><au>Fukumizu, Y.</au><au>Yamauchi, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visual categorization method with a Bag of PCA packed Keypoints</atitle><btitle>2011 4th International Congress on Image and Signal Processing</btitle><stitle>CISP</stitle><date>2011-10</date><risdate>2011</risdate><volume>2</volume><spage>950</spage><epage>953</epage><pages>950-953</pages><isbn>1424493048</isbn><isbn>9781424493043</isbn><eisbn>1424493056</eisbn><eisbn>9781424493067</eisbn><eisbn>9781424493050</eisbn><eisbn>1424493064</eisbn><abstract>Visual categorization is one of a key function in the next generation of a driving assist system, which is expected to reduce a traffic accident. This paper proposes a high performance visual categorization method, which is based on Feature Accelerated Segment Test (FAST) feature point detectors, Histograms of Oriented Gradients (HOG) feature descriptors and Bag-of-Keypoints (BoK). Each feature descriptors were orthogonalized by applying the Principal Component Analysis (PCA) to reduce the size of dimension. As a result, our proposed method has achieved the recognition rate of 69.5% and the performance of 43.1 ms on a PC in order to categorize one object in an image into traffic related categories, i.e. pedestrians, cars, bikes, bicycles, and so on. The comparison with conventional methods will be also discussed.</abstract><pub>IEEE</pub><doi>10.1109/CISP.2011.6100330</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424493048 |
ispartof | 2011 4th International Congress on Image and Signal Processing, 2011, Vol.2, p.950-953 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6100330 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Brightness Detectors FAST Feature extraction Histograms HOG PCA Principal component analysis Vectors Visual categorization Visualization |
title | Visual categorization method with a Bag of PCA packed Keypoints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visual%20categorization%20method%20with%20a%20Bag%20of%20PCA%20packed%20Keypoints&rft.btitle=2011%204th%20International%20Congress%20on%20Image%20and%20Signal%20Processing&rft.au=Okumura,%20S.&rft.date=2011-10&rft.volume=2&rft.spage=950&rft.epage=953&rft.pages=950-953&rft.isbn=1424493048&rft.isbn_list=9781424493043&rft_id=info:doi/10.1109/CISP.2011.6100330&rft_dat=%3Cieee_6IE%3E6100330%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424493056&rft.eisbn_list=9781424493067&rft.eisbn_list=9781424493050&rft.eisbn_list=1424493064&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6100330&rfr_iscdi=true |