Personalized modeling for drug concentration prediction using Support Vector Machine
Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe th...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1509 |
---|---|
container_issue | |
container_start_page | 1505 |
container_title | |
container_volume | 3 |
creator | Wenqi You Widmer, Nicolas De Micheli, Giovanni |
description | Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models. |
doi_str_mv | 10.1109/BMEI.2011.6098593 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6098593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6098593</ieee_id><sourcerecordid>6098593</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1333-9f700480070aea28847c1a13618d5cb5b910f76b054b4dc47e03411f709375eb3</originalsourceid><addsrcrecordid>eNo9UEtOwzAUND-JUnIAxCYXSHnPdmJ7CVWBSq1AoiB2leO8FKM2iZxkAacnQGE2M9J8FsPYBcIEEczVzXI2n3BAnGRgdGrEAYuM0ii5lEakXB6yERqpE244P2Jnfwa-Hv8bKE9Z1LbvMCDLtDJ6xFaPFNq6slv_SUW8qwva-moTl3WIi9BvYldXjqou2M7XVdwEKrz7kX37nXvqm6YOXfxCrhsqS-vefEXn7KS025aiPY_Z8-1sNb1PFg938-n1IvEohEhMqQCkBlBgyXKtpXJoUWSoi9TlaW4QSpXlkMpcFk4qAiERh5YRKqVcjNnl764nonUT_M6Gj_X-IPEF6K5VUQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Personalized modeling for drug concentration prediction using Support Vector Machine</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wenqi You ; Widmer, Nicolas ; De Micheli, Giovanni</creator><creatorcontrib>Wenqi You ; Widmer, Nicolas ; De Micheli, Giovanni</creatorcontrib><description>Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.</description><identifier>ISSN: 1948-2914</identifier><identifier>ISBN: 142449351X</identifier><identifier>ISBN: 9781424493517</identifier><identifier>EISSN: 1948-2922</identifier><identifier>EISBN: 9781424493524</identifier><identifier>EISBN: 1424493528</identifier><identifier>EISBN: 1424493501</identifier><identifier>EISBN: 9781424493500</identifier><identifier>DOI: 10.1109/BMEI.2011.6098593</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Drugs ; Kernel ; Machine learning ; Mathematical model ; Predictive models ; Support vector machines</subject><ispartof>2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), 2011, Vol.3, p.1505-1509</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6098593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6098593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wenqi You</creatorcontrib><creatorcontrib>Widmer, Nicolas</creatorcontrib><creatorcontrib>De Micheli, Giovanni</creatorcontrib><title>Personalized modeling for drug concentration prediction using Support Vector Machine</title><title>2011 4th International Conference on Biomedical Engineering and Informatics (BMEI)</title><addtitle>BMEI</addtitle><description>Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.</description><subject>Analytical models</subject><subject>Drugs</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Predictive models</subject><subject>Support vector machines</subject><issn>1948-2914</issn><issn>1948-2922</issn><isbn>142449351X</isbn><isbn>9781424493517</isbn><isbn>9781424493524</isbn><isbn>1424493528</isbn><isbn>1424493501</isbn><isbn>9781424493500</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UEtOwzAUND-JUnIAxCYXSHnPdmJ7CVWBSq1AoiB2leO8FKM2iZxkAacnQGE2M9J8FsPYBcIEEczVzXI2n3BAnGRgdGrEAYuM0ii5lEakXB6yERqpE244P2Jnfwa-Hv8bKE9Z1LbvMCDLtDJ6xFaPFNq6slv_SUW8qwva-moTl3WIi9BvYldXjqou2M7XVdwEKrz7kX37nXvqm6YOXfxCrhsqS-vefEXn7KS025aiPY_Z8-1sNb1PFg938-n1IvEohEhMqQCkBlBgyXKtpXJoUWSoi9TlaW4QSpXlkMpcFk4qAiERh5YRKqVcjNnl764nonUT_M6Gj_X-IPEF6K5VUQ</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Wenqi You</creator><creator>Widmer, Nicolas</creator><creator>De Micheli, Giovanni</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Personalized modeling for drug concentration prediction using Support Vector Machine</title><author>Wenqi You ; Widmer, Nicolas ; De Micheli, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1333-9f700480070aea28847c1a13618d5cb5b910f76b054b4dc47e03411f709375eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical models</topic><topic>Drugs</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Predictive models</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Wenqi You</creatorcontrib><creatorcontrib>Widmer, Nicolas</creatorcontrib><creatorcontrib>De Micheli, Giovanni</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wenqi You</au><au>Widmer, Nicolas</au><au>De Micheli, Giovanni</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Personalized modeling for drug concentration prediction using Support Vector Machine</atitle><btitle>2011 4th International Conference on Biomedical Engineering and Informatics (BMEI)</btitle><stitle>BMEI</stitle><date>2011-10</date><risdate>2011</risdate><volume>3</volume><spage>1505</spage><epage>1509</epage><pages>1505-1509</pages><issn>1948-2914</issn><eissn>1948-2922</eissn><isbn>142449351X</isbn><isbn>9781424493517</isbn><eisbn>9781424493524</eisbn><eisbn>1424493528</eisbn><eisbn>1424493501</eisbn><eisbn>9781424493500</eisbn><abstract>Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.</abstract><pub>IEEE</pub><doi>10.1109/BMEI.2011.6098593</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-2914 |
ispartof | 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), 2011, Vol.3, p.1505-1509 |
issn | 1948-2914 1948-2922 |
language | eng |
recordid | cdi_ieee_primary_6098593 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Drugs Kernel Machine learning Mathematical model Predictive models Support vector machines |
title | Personalized modeling for drug concentration prediction using Support Vector Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Personalized%20modeling%20for%20drug%20concentration%20prediction%20using%20Support%20Vector%20Machine&rft.btitle=2011%204th%20International%20Conference%20on%20Biomedical%20Engineering%20and%20Informatics%20(BMEI)&rft.au=Wenqi%20You&rft.date=2011-10&rft.volume=3&rft.spage=1505&rft.epage=1509&rft.pages=1505-1509&rft.issn=1948-2914&rft.eissn=1948-2922&rft.isbn=142449351X&rft.isbn_list=9781424493517&rft_id=info:doi/10.1109/BMEI.2011.6098593&rft_dat=%3Cieee_6IE%3E6098593%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424493524&rft.eisbn_list=1424493528&rft.eisbn_list=1424493501&rft.eisbn_list=9781424493500&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6098593&rfr_iscdi=true |