Personalized modeling for drug concentration prediction using Support Vector Machine

Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wenqi You, Widmer, Nicolas, De Micheli, Giovanni
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1509
container_issue
container_start_page 1505
container_title
container_volume 3
creator Wenqi You
Widmer, Nicolas
De Micheli, Giovanni
description Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.
doi_str_mv 10.1109/BMEI.2011.6098593
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6098593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6098593</ieee_id><sourcerecordid>6098593</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1333-9f700480070aea28847c1a13618d5cb5b910f76b054b4dc47e03411f709375eb3</originalsourceid><addsrcrecordid>eNo9UEtOwzAUND-JUnIAxCYXSHnPdmJ7CVWBSq1AoiB2leO8FKM2iZxkAacnQGE2M9J8FsPYBcIEEczVzXI2n3BAnGRgdGrEAYuM0ii5lEakXB6yERqpE244P2Jnfwa-Hv8bKE9Z1LbvMCDLtDJ6xFaPFNq6slv_SUW8qwva-moTl3WIi9BvYldXjqou2M7XVdwEKrz7kX37nXvqm6YOXfxCrhsqS-vefEXn7KS025aiPY_Z8-1sNb1PFg938-n1IvEohEhMqQCkBlBgyXKtpXJoUWSoi9TlaW4QSpXlkMpcFk4qAiERh5YRKqVcjNnl764nonUT_M6Gj_X-IPEF6K5VUQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Personalized modeling for drug concentration prediction using Support Vector Machine</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wenqi You ; Widmer, Nicolas ; De Micheli, Giovanni</creator><creatorcontrib>Wenqi You ; Widmer, Nicolas ; De Micheli, Giovanni</creatorcontrib><description>Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.</description><identifier>ISSN: 1948-2914</identifier><identifier>ISBN: 142449351X</identifier><identifier>ISBN: 9781424493517</identifier><identifier>EISSN: 1948-2922</identifier><identifier>EISBN: 9781424493524</identifier><identifier>EISBN: 1424493528</identifier><identifier>EISBN: 1424493501</identifier><identifier>EISBN: 9781424493500</identifier><identifier>DOI: 10.1109/BMEI.2011.6098593</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Drugs ; Kernel ; Machine learning ; Mathematical model ; Predictive models ; Support vector machines</subject><ispartof>2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), 2011, Vol.3, p.1505-1509</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6098593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6098593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wenqi You</creatorcontrib><creatorcontrib>Widmer, Nicolas</creatorcontrib><creatorcontrib>De Micheli, Giovanni</creatorcontrib><title>Personalized modeling for drug concentration prediction using Support Vector Machine</title><title>2011 4th International Conference on Biomedical Engineering and Informatics (BMEI)</title><addtitle>BMEI</addtitle><description>Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.</description><subject>Analytical models</subject><subject>Drugs</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Predictive models</subject><subject>Support vector machines</subject><issn>1948-2914</issn><issn>1948-2922</issn><isbn>142449351X</isbn><isbn>9781424493517</isbn><isbn>9781424493524</isbn><isbn>1424493528</isbn><isbn>1424493501</isbn><isbn>9781424493500</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UEtOwzAUND-JUnIAxCYXSHnPdmJ7CVWBSq1AoiB2leO8FKM2iZxkAacnQGE2M9J8FsPYBcIEEczVzXI2n3BAnGRgdGrEAYuM0ii5lEakXB6yERqpE244P2Jnfwa-Hv8bKE9Z1LbvMCDLtDJ6xFaPFNq6slv_SUW8qwva-moTl3WIi9BvYldXjqou2M7XVdwEKrz7kX37nXvqm6YOXfxCrhsqS-vefEXn7KS025aiPY_Z8-1sNb1PFg938-n1IvEohEhMqQCkBlBgyXKtpXJoUWSoi9TlaW4QSpXlkMpcFk4qAiERh5YRKqVcjNnl764nonUT_M6Gj_X-IPEF6K5VUQ</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Wenqi You</creator><creator>Widmer, Nicolas</creator><creator>De Micheli, Giovanni</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Personalized modeling for drug concentration prediction using Support Vector Machine</title><author>Wenqi You ; Widmer, Nicolas ; De Micheli, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1333-9f700480070aea28847c1a13618d5cb5b910f76b054b4dc47e03411f709375eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical models</topic><topic>Drugs</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Predictive models</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Wenqi You</creatorcontrib><creatorcontrib>Widmer, Nicolas</creatorcontrib><creatorcontrib>De Micheli, Giovanni</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wenqi You</au><au>Widmer, Nicolas</au><au>De Micheli, Giovanni</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Personalized modeling for drug concentration prediction using Support Vector Machine</atitle><btitle>2011 4th International Conference on Biomedical Engineering and Informatics (BMEI)</btitle><stitle>BMEI</stitle><date>2011-10</date><risdate>2011</risdate><volume>3</volume><spage>1505</spage><epage>1509</epage><pages>1505-1509</pages><issn>1948-2914</issn><eissn>1948-2922</eissn><isbn>142449351X</isbn><isbn>9781424493517</isbn><eisbn>9781424493524</eisbn><eisbn>1424493528</eisbn><eisbn>1424493501</eisbn><eisbn>9781424493500</eisbn><abstract>Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.</abstract><pub>IEEE</pub><doi>10.1109/BMEI.2011.6098593</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-2914
ispartof 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), 2011, Vol.3, p.1505-1509
issn 1948-2914
1948-2922
language eng
recordid cdi_ieee_primary_6098593
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Drugs
Kernel
Machine learning
Mathematical model
Predictive models
Support vector machines
title Personalized modeling for drug concentration prediction using Support Vector Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Personalized%20modeling%20for%20drug%20concentration%20prediction%20using%20Support%20Vector%20Machine&rft.btitle=2011%204th%20International%20Conference%20on%20Biomedical%20Engineering%20and%20Informatics%20(BMEI)&rft.au=Wenqi%20You&rft.date=2011-10&rft.volume=3&rft.spage=1505&rft.epage=1509&rft.pages=1505-1509&rft.issn=1948-2914&rft.eissn=1948-2922&rft.isbn=142449351X&rft.isbn_list=9781424493517&rft_id=info:doi/10.1109/BMEI.2011.6098593&rft_dat=%3Cieee_6IE%3E6098593%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424493524&rft.eisbn_list=1424493528&rft.eisbn_list=1424493501&rft.eisbn_list=9781424493500&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6098593&rfr_iscdi=true