Shape indexing by structural properties
The availability of large image databases and retrieval by content has imposed the requirement for indexing procedures to allow a fast pruning of the database items. Indexing of shapes is particularly challenging owing to the difficulty in deriving a similarity measure that supports clustering of sh...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | |
container_start_page | 370 |
container_title | |
container_volume | |
creator | Bimbo, A.D. Pala, P. |
description | The availability of large image databases and retrieval by content has imposed the requirement for indexing procedures to allow a fast pruning of the database items. Indexing of shapes is particularly challenging owing to the difficulty in deriving a similarity measure that supports clustering of shapes according to human perceptual similarity. In this paper we present a technique which exploits a multiscale analysis of shapes, to derive a hierarchical shape representation in which shape details are progressively filtered out while shape characterizing elements are preserved. To provide the necessary degree of robustness with respect to shape variability fuzzy sets have been used to describe the visual appearance of shape parts. A graph-like index structure is derived by clustering shapes sharing similar part descriptions. Results of indexing for a sample database are reported, with efficiency and effectiveness measures. |
doi_str_mv | 10.1109/MMCS.1997.609638 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_609638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>609638</ieee_id><sourcerecordid>609638</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-88e96a19f81269a8fbfc1ea70712c9053e1fab32b7fda5e1b9ae562af1e3e6213</originalsourceid><addsrcrecordid>eNotj01LAzEQQAMiKHXvxdPePO2a2Zhk5iiLX9DiofZcJtuJRmpdki3Yf69Q3-XdHjyl5qBbAE23y2W_aoHIt06TM3imKvKoEdB5BHIXqirlU_9hLVqrL9XN6oNHqdN-Kz9p_16HY12mfBimQ-ZdPebvUfKUpFyp88i7ItW_Z2r9-PDWPzeL16eX_n7RJNB3U4Mo5BgoInSOGGOIAwh77aEbSFsjEDmYLvi4ZSsQiMW6jiOIEdeBmanrUzeJyGbM6YvzcXO6Mb-mlj-2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shape indexing by structural properties</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bimbo, A.D. ; Pala, P.</creator><creatorcontrib>Bimbo, A.D. ; Pala, P.</creatorcontrib><description>The availability of large image databases and retrieval by content has imposed the requirement for indexing procedures to allow a fast pruning of the database items. Indexing of shapes is particularly challenging owing to the difficulty in deriving a similarity measure that supports clustering of shapes according to human perceptual similarity. In this paper we present a technique which exploits a multiscale analysis of shapes, to derive a hierarchical shape representation in which shape details are progressively filtered out while shape characterizing elements are preserved. To provide the necessary degree of robustness with respect to shape variability fuzzy sets have been used to describe the visual appearance of shape parts. A graph-like index structure is derived by clustering shapes sharing similar part descriptions. Results of indexing for a sample database are reported, with efficiency and effectiveness measures.</description><identifier>ISBN: 9780818678196</identifier><identifier>ISBN: 9780818655302</identifier><identifier>ISBN: 0818655305</identifier><identifier>ISBN: 0818678194</identifier><identifier>DOI: 10.1109/MMCS.1997.609638</identifier><language>eng</language><publisher>IEEE</publisher><subject>Content based retrieval ; Fuzzy sets ; Humans ; Image databases ; Image retrieval ; Indexing ; Information retrieval ; Particle measurements ; Robustness ; Shape measurement</subject><ispartof>Proceedings of IEEE International Conference on Multimedia Computing and Systems, 1997, p.370-377</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/609638$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/609638$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bimbo, A.D.</creatorcontrib><creatorcontrib>Pala, P.</creatorcontrib><title>Shape indexing by structural properties</title><title>Proceedings of IEEE International Conference on Multimedia Computing and Systems</title><addtitle>MMCS</addtitle><description>The availability of large image databases and retrieval by content has imposed the requirement for indexing procedures to allow a fast pruning of the database items. Indexing of shapes is particularly challenging owing to the difficulty in deriving a similarity measure that supports clustering of shapes according to human perceptual similarity. In this paper we present a technique which exploits a multiscale analysis of shapes, to derive a hierarchical shape representation in which shape details are progressively filtered out while shape characterizing elements are preserved. To provide the necessary degree of robustness with respect to shape variability fuzzy sets have been used to describe the visual appearance of shape parts. A graph-like index structure is derived by clustering shapes sharing similar part descriptions. Results of indexing for a sample database are reported, with efficiency and effectiveness measures.</description><subject>Content based retrieval</subject><subject>Fuzzy sets</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image retrieval</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Particle measurements</subject><subject>Robustness</subject><subject>Shape measurement</subject><isbn>9780818678196</isbn><isbn>9780818655302</isbn><isbn>0818655305</isbn><isbn>0818678194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LAzEQQAMiKHXvxdPePO2a2Zhk5iiLX9DiofZcJtuJRmpdki3Yf69Q3-XdHjyl5qBbAE23y2W_aoHIt06TM3imKvKoEdB5BHIXqirlU_9hLVqrL9XN6oNHqdN-Kz9p_16HY12mfBimQ-ZdPebvUfKUpFyp88i7ItW_Z2r9-PDWPzeL16eX_n7RJNB3U4Mo5BgoInSOGGOIAwh77aEbSFsjEDmYLvi4ZSsQiMW6jiOIEdeBmanrUzeJyGbM6YvzcXO6Mb-mlj-2</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Bimbo, A.D.</creator><creator>Pala, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Shape indexing by structural properties</title><author>Bimbo, A.D. ; Pala, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-88e96a19f81269a8fbfc1ea70712c9053e1fab32b7fda5e1b9ae562af1e3e6213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Content based retrieval</topic><topic>Fuzzy sets</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image retrieval</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Particle measurements</topic><topic>Robustness</topic><topic>Shape measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Bimbo, A.D.</creatorcontrib><creatorcontrib>Pala, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bimbo, A.D.</au><au>Pala, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shape indexing by structural properties</atitle><btitle>Proceedings of IEEE International Conference on Multimedia Computing and Systems</btitle><stitle>MMCS</stitle><date>1997</date><risdate>1997</risdate><spage>370</spage><epage>377</epage><pages>370-377</pages><isbn>9780818678196</isbn><isbn>9780818655302</isbn><isbn>0818655305</isbn><isbn>0818678194</isbn><abstract>The availability of large image databases and retrieval by content has imposed the requirement for indexing procedures to allow a fast pruning of the database items. Indexing of shapes is particularly challenging owing to the difficulty in deriving a similarity measure that supports clustering of shapes according to human perceptual similarity. In this paper we present a technique which exploits a multiscale analysis of shapes, to derive a hierarchical shape representation in which shape details are progressively filtered out while shape characterizing elements are preserved. To provide the necessary degree of robustness with respect to shape variability fuzzy sets have been used to describe the visual appearance of shape parts. A graph-like index structure is derived by clustering shapes sharing similar part descriptions. Results of indexing for a sample database are reported, with efficiency and effectiveness measures.</abstract><pub>IEEE</pub><doi>10.1109/MMCS.1997.609638</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780818678196 |
ispartof | Proceedings of IEEE International Conference on Multimedia Computing and Systems, 1997, p.370-377 |
issn | |
language | eng |
recordid | cdi_ieee_primary_609638 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Content based retrieval Fuzzy sets Humans Image databases Image retrieval Indexing Information retrieval Particle measurements Robustness Shape measurement |
title | Shape indexing by structural properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shape%20indexing%20by%20structural%20properties&rft.btitle=Proceedings%20of%20IEEE%20International%20Conference%20on%20Multimedia%20Computing%20and%20Systems&rft.au=Bimbo,%20A.D.&rft.date=1997&rft.spage=370&rft.epage=377&rft.pages=370-377&rft.isbn=9780818678196&rft.isbn_list=9780818655302&rft.isbn_list=0818655305&rft.isbn_list=0818678194&rft_id=info:doi/10.1109/MMCS.1997.609638&rft_dat=%3Cieee_6IE%3E609638%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=609638&rfr_iscdi=true |