Shape indexing by structural properties

The availability of large image databases and retrieval by content has imposed the requirement for indexing procedures to allow a fast pruning of the database items. Indexing of shapes is particularly challenging owing to the difficulty in deriving a similarity measure that supports clustering of sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bimbo, A.D., Pala, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue
container_start_page 370
container_title
container_volume
creator Bimbo, A.D.
Pala, P.
description The availability of large image databases and retrieval by content has imposed the requirement for indexing procedures to allow a fast pruning of the database items. Indexing of shapes is particularly challenging owing to the difficulty in deriving a similarity measure that supports clustering of shapes according to human perceptual similarity. In this paper we present a technique which exploits a multiscale analysis of shapes, to derive a hierarchical shape representation in which shape details are progressively filtered out while shape characterizing elements are preserved. To provide the necessary degree of robustness with respect to shape variability fuzzy sets have been used to describe the visual appearance of shape parts. A graph-like index structure is derived by clustering shapes sharing similar part descriptions. Results of indexing for a sample database are reported, with efficiency and effectiveness measures.
doi_str_mv 10.1109/MMCS.1997.609638
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_609638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>609638</ieee_id><sourcerecordid>609638</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-88e96a19f81269a8fbfc1ea70712c9053e1fab32b7fda5e1b9ae562af1e3e6213</originalsourceid><addsrcrecordid>eNotj01LAzEQQAMiKHXvxdPePO2a2Zhk5iiLX9DiofZcJtuJRmpdki3Yf69Q3-XdHjyl5qBbAE23y2W_aoHIt06TM3imKvKoEdB5BHIXqirlU_9hLVqrL9XN6oNHqdN-Kz9p_16HY12mfBimQ-ZdPebvUfKUpFyp88i7ItW_Z2r9-PDWPzeL16eX_n7RJNB3U4Mo5BgoInSOGGOIAwh77aEbSFsjEDmYLvi4ZSsQiMW6jiOIEdeBmanrUzeJyGbM6YvzcXO6Mb-mlj-2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shape indexing by structural properties</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bimbo, A.D. ; Pala, P.</creator><creatorcontrib>Bimbo, A.D. ; Pala, P.</creatorcontrib><description>The availability of large image databases and retrieval by content has imposed the requirement for indexing procedures to allow a fast pruning of the database items. Indexing of shapes is particularly challenging owing to the difficulty in deriving a similarity measure that supports clustering of shapes according to human perceptual similarity. In this paper we present a technique which exploits a multiscale analysis of shapes, to derive a hierarchical shape representation in which shape details are progressively filtered out while shape characterizing elements are preserved. To provide the necessary degree of robustness with respect to shape variability fuzzy sets have been used to describe the visual appearance of shape parts. A graph-like index structure is derived by clustering shapes sharing similar part descriptions. Results of indexing for a sample database are reported, with efficiency and effectiveness measures.</description><identifier>ISBN: 9780818678196</identifier><identifier>ISBN: 9780818655302</identifier><identifier>ISBN: 0818655305</identifier><identifier>ISBN: 0818678194</identifier><identifier>DOI: 10.1109/MMCS.1997.609638</identifier><language>eng</language><publisher>IEEE</publisher><subject>Content based retrieval ; Fuzzy sets ; Humans ; Image databases ; Image retrieval ; Indexing ; Information retrieval ; Particle measurements ; Robustness ; Shape measurement</subject><ispartof>Proceedings of IEEE International Conference on Multimedia Computing and Systems, 1997, p.370-377</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/609638$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/609638$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bimbo, A.D.</creatorcontrib><creatorcontrib>Pala, P.</creatorcontrib><title>Shape indexing by structural properties</title><title>Proceedings of IEEE International Conference on Multimedia Computing and Systems</title><addtitle>MMCS</addtitle><description>The availability of large image databases and retrieval by content has imposed the requirement for indexing procedures to allow a fast pruning of the database items. Indexing of shapes is particularly challenging owing to the difficulty in deriving a similarity measure that supports clustering of shapes according to human perceptual similarity. In this paper we present a technique which exploits a multiscale analysis of shapes, to derive a hierarchical shape representation in which shape details are progressively filtered out while shape characterizing elements are preserved. To provide the necessary degree of robustness with respect to shape variability fuzzy sets have been used to describe the visual appearance of shape parts. A graph-like index structure is derived by clustering shapes sharing similar part descriptions. Results of indexing for a sample database are reported, with efficiency and effectiveness measures.</description><subject>Content based retrieval</subject><subject>Fuzzy sets</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image retrieval</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Particle measurements</subject><subject>Robustness</subject><subject>Shape measurement</subject><isbn>9780818678196</isbn><isbn>9780818655302</isbn><isbn>0818655305</isbn><isbn>0818678194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LAzEQQAMiKHXvxdPePO2a2Zhk5iiLX9DiofZcJtuJRmpdki3Yf69Q3-XdHjyl5qBbAE23y2W_aoHIt06TM3imKvKoEdB5BHIXqirlU_9hLVqrL9XN6oNHqdN-Kz9p_16HY12mfBimQ-ZdPebvUfKUpFyp88i7ItW_Z2r9-PDWPzeL16eX_n7RJNB3U4Mo5BgoInSOGGOIAwh77aEbSFsjEDmYLvi4ZSsQiMW6jiOIEdeBmanrUzeJyGbM6YvzcXO6Mb-mlj-2</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Bimbo, A.D.</creator><creator>Pala, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Shape indexing by structural properties</title><author>Bimbo, A.D. ; Pala, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-88e96a19f81269a8fbfc1ea70712c9053e1fab32b7fda5e1b9ae562af1e3e6213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Content based retrieval</topic><topic>Fuzzy sets</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image retrieval</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Particle measurements</topic><topic>Robustness</topic><topic>Shape measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Bimbo, A.D.</creatorcontrib><creatorcontrib>Pala, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bimbo, A.D.</au><au>Pala, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shape indexing by structural properties</atitle><btitle>Proceedings of IEEE International Conference on Multimedia Computing and Systems</btitle><stitle>MMCS</stitle><date>1997</date><risdate>1997</risdate><spage>370</spage><epage>377</epage><pages>370-377</pages><isbn>9780818678196</isbn><isbn>9780818655302</isbn><isbn>0818655305</isbn><isbn>0818678194</isbn><abstract>The availability of large image databases and retrieval by content has imposed the requirement for indexing procedures to allow a fast pruning of the database items. Indexing of shapes is particularly challenging owing to the difficulty in deriving a similarity measure that supports clustering of shapes according to human perceptual similarity. In this paper we present a technique which exploits a multiscale analysis of shapes, to derive a hierarchical shape representation in which shape details are progressively filtered out while shape characterizing elements are preserved. To provide the necessary degree of robustness with respect to shape variability fuzzy sets have been used to describe the visual appearance of shape parts. A graph-like index structure is derived by clustering shapes sharing similar part descriptions. Results of indexing for a sample database are reported, with efficiency and effectiveness measures.</abstract><pub>IEEE</pub><doi>10.1109/MMCS.1997.609638</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780818678196
ispartof Proceedings of IEEE International Conference on Multimedia Computing and Systems, 1997, p.370-377
issn
language eng
recordid cdi_ieee_primary_609638
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Content based retrieval
Fuzzy sets
Humans
Image databases
Image retrieval
Indexing
Information retrieval
Particle measurements
Robustness
Shape measurement
title Shape indexing by structural properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shape%20indexing%20by%20structural%20properties&rft.btitle=Proceedings%20of%20IEEE%20International%20Conference%20on%20Multimedia%20Computing%20and%20Systems&rft.au=Bimbo,%20A.D.&rft.date=1997&rft.spage=370&rft.epage=377&rft.pages=370-377&rft.isbn=9780818678196&rft.isbn_list=9780818655302&rft.isbn_list=0818655305&rft.isbn_list=0818678194&rft_id=info:doi/10.1109/MMCS.1997.609638&rft_dat=%3Cieee_6IE%3E609638%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=609638&rfr_iscdi=true