Predicting iris vulnerability to direct attacks based on quality related features

A new vulnerability prediction scheme for direct attacks to iris recognition systems is presented. The objective of the novel technique, based on a 22 quality related parameterization, is to discriminate beforehand between real samples which are easy to spoof and those more resistant to this type of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ortiz-Lopez, Jaime, Galbally, J., Fierrez, J., Ortega-Garcia, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Ortiz-Lopez, Jaime
Galbally, J.
Fierrez, J.
Ortega-Garcia, J.
description A new vulnerability prediction scheme for direct attacks to iris recognition systems is presented. The objective of the novel technique, based on a 22 quality related parameterization, is to discriminate beforehand between real samples which are easy to spoof and those more resistant to this type of threat. The system is tested on a database comprising over 1,600 real and fake iris images proving to have a high discriminative power reaching an overall rate of 84% correctly classified real samples for the dataset considered. Furthermore, the detection method presented has the added advantage of needing just one iris image (the same used for verification) to decide its degree of robustness against spoofing attacks.
doi_str_mv 10.1109/CCST.2011.6095949
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6095949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6095949</ieee_id><sourcerecordid>6095949</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-87bb0e80c521a56e29e0d7cb5eb81efac624eecac51009eff5a96624c237550e3</originalsourceid><addsrcrecordid>eNpFkN1Kw0AUhNc_MK0-gHizL5B6ziabzV5KsCoUVKzX5WRzIqux1d2t0Lc3aMGrgW-GYRghLhBmiGCvmuZ5OVOAOKvAalvaAzHBUhsDFgo8FJlCXeRgSnX0b6jiWGQIBvNKG3UqJjG-wUgN1pl4egzceZf8-lX64KP83g5rDtT6waedTBvZ-cAuSUqJ3HuULUXu5GYtv7b0Gwk8UBpRz5S2geOZOOlpiHy-16l4md8sm7t88XB731wvco9Gp7w2bQtcg9MKSVesLENnXKu5rZF7cpUqmR05jQCW-16TrUbmxuFaAxdTcfnX65l59Rn8B4Xdav9L8QNpVlRP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predicting iris vulnerability to direct attacks based on quality related features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ortiz-Lopez, Jaime ; Galbally, J. ; Fierrez, J. ; Ortega-Garcia, J.</creator><creatorcontrib>Ortiz-Lopez, Jaime ; Galbally, J. ; Fierrez, J. ; Ortega-Garcia, J.</creatorcontrib><description>A new vulnerability prediction scheme for direct attacks to iris recognition systems is presented. The objective of the novel technique, based on a 22 quality related parameterization, is to discriminate beforehand between real samples which are easy to spoof and those more resistant to this type of threat. The system is tested on a database comprising over 1,600 real and fake iris images proving to have a high discriminative power reaching an overall rate of 84% correctly classified real samples for the dataset considered. Furthermore, the detection method presented has the added advantage of needing just one iris image (the same used for verification) to decide its degree of robustness against spoofing attacks.</description><identifier>ISSN: 1071-6572</identifier><identifier>ISBN: 1457709023</identifier><identifier>ISBN: 9781457709029</identifier><identifier>EISSN: 2153-0742</identifier><identifier>EISBN: 1457709031</identifier><identifier>EISBN: 9781457709036</identifier><identifier>DOI: 10.1109/CCST.2011.6095949</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; Image segmentation ; Iris ; Iris recognition ; Quality assessment ; Robustness ; Security ; Vulnerability</subject><ispartof>2011 Carnahan Conference on Security Technology, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6095949$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6095949$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ortiz-Lopez, Jaime</creatorcontrib><creatorcontrib>Galbally, J.</creatorcontrib><creatorcontrib>Fierrez, J.</creatorcontrib><creatorcontrib>Ortega-Garcia, J.</creatorcontrib><title>Predicting iris vulnerability to direct attacks based on quality related features</title><title>2011 Carnahan Conference on Security Technology</title><addtitle>CCST</addtitle><description>A new vulnerability prediction scheme for direct attacks to iris recognition systems is presented. The objective of the novel technique, based on a 22 quality related parameterization, is to discriminate beforehand between real samples which are easy to spoof and those more resistant to this type of threat. The system is tested on a database comprising over 1,600 real and fake iris images proving to have a high discriminative power reaching an overall rate of 84% correctly classified real samples for the dataset considered. Furthermore, the detection method presented has the added advantage of needing just one iris image (the same used for verification) to decide its degree of robustness against spoofing attacks.</description><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Iris</subject><subject>Iris recognition</subject><subject>Quality assessment</subject><subject>Robustness</subject><subject>Security</subject><subject>Vulnerability</subject><issn>1071-6572</issn><issn>2153-0742</issn><isbn>1457709023</isbn><isbn>9781457709029</isbn><isbn>1457709031</isbn><isbn>9781457709036</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkN1Kw0AUhNc_MK0-gHizL5B6ziabzV5KsCoUVKzX5WRzIqux1d2t0Lc3aMGrgW-GYRghLhBmiGCvmuZ5OVOAOKvAalvaAzHBUhsDFgo8FJlCXeRgSnX0b6jiWGQIBvNKG3UqJjG-wUgN1pl4egzceZf8-lX64KP83g5rDtT6waedTBvZ-cAuSUqJ3HuULUXu5GYtv7b0Gwk8UBpRz5S2geOZOOlpiHy-16l4md8sm7t88XB731wvco9Gp7w2bQtcg9MKSVesLENnXKu5rZF7cpUqmR05jQCW-16TrUbmxuFaAxdTcfnX65l59Rn8B4Xdav9L8QNpVlRP</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Ortiz-Lopez, Jaime</creator><creator>Galbally, J.</creator><creator>Fierrez, J.</creator><creator>Ortega-Garcia, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201110</creationdate><title>Predicting iris vulnerability to direct attacks based on quality related features</title><author>Ortiz-Lopez, Jaime ; Galbally, J. ; Fierrez, J. ; Ortega-Garcia, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-87bb0e80c521a56e29e0d7cb5eb81efac624eecac51009eff5a96624c237550e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Iris</topic><topic>Iris recognition</topic><topic>Quality assessment</topic><topic>Robustness</topic><topic>Security</topic><topic>Vulnerability</topic><toplevel>online_resources</toplevel><creatorcontrib>Ortiz-Lopez, Jaime</creatorcontrib><creatorcontrib>Galbally, J.</creatorcontrib><creatorcontrib>Fierrez, J.</creatorcontrib><creatorcontrib>Ortega-Garcia, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ortiz-Lopez, Jaime</au><au>Galbally, J.</au><au>Fierrez, J.</au><au>Ortega-Garcia, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predicting iris vulnerability to direct attacks based on quality related features</atitle><btitle>2011 Carnahan Conference on Security Technology</btitle><stitle>CCST</stitle><date>2011-10</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1071-6572</issn><eissn>2153-0742</eissn><isbn>1457709023</isbn><isbn>9781457709029</isbn><eisbn>1457709031</eisbn><eisbn>9781457709036</eisbn><abstract>A new vulnerability prediction scheme for direct attacks to iris recognition systems is presented. The objective of the novel technique, based on a 22 quality related parameterization, is to discriminate beforehand between real samples which are easy to spoof and those more resistant to this type of threat. The system is tested on a database comprising over 1,600 real and fake iris images proving to have a high discriminative power reaching an overall rate of 84% correctly classified real samples for the dataset considered. Furthermore, the detection method presented has the added advantage of needing just one iris image (the same used for verification) to decide its degree of robustness against spoofing attacks.</abstract><pub>IEEE</pub><doi>10.1109/CCST.2011.6095949</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1071-6572
ispartof 2011 Carnahan Conference on Security Technology, 2011, p.1-6
issn 1071-6572
2153-0742
language eng
recordid cdi_ieee_primary_6095949
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feature extraction
Image segmentation
Iris
Iris recognition
Quality assessment
Robustness
Security
Vulnerability
title Predicting iris vulnerability to direct attacks based on quality related features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predicting%20iris%20vulnerability%20to%20direct%20attacks%20based%20on%20quality%20related%20features&rft.btitle=2011%20Carnahan%20Conference%20on%20Security%20Technology&rft.au=Ortiz-Lopez,%20Jaime&rft.date=2011-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1071-6572&rft.eissn=2153-0742&rft.isbn=1457709023&rft.isbn_list=9781457709029&rft_id=info:doi/10.1109/CCST.2011.6095949&rft_dat=%3Cieee_6IE%3E6095949%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457709031&rft.eisbn_list=9781457709036&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6095949&rfr_iscdi=true