Predicting iris vulnerability to direct attacks based on quality related features
A new vulnerability prediction scheme for direct attacks to iris recognition systems is presented. The objective of the novel technique, based on a 22 quality related parameterization, is to discriminate beforehand between real samples which are easy to spoof and those more resistant to this type of...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ortiz-Lopez, Jaime Galbally, J. Fierrez, J. Ortega-Garcia, J. |
description | A new vulnerability prediction scheme for direct attacks to iris recognition systems is presented. The objective of the novel technique, based on a 22 quality related parameterization, is to discriminate beforehand between real samples which are easy to spoof and those more resistant to this type of threat. The system is tested on a database comprising over 1,600 real and fake iris images proving to have a high discriminative power reaching an overall rate of 84% correctly classified real samples for the dataset considered. Furthermore, the detection method presented has the added advantage of needing just one iris image (the same used for verification) to decide its degree of robustness against spoofing attacks. |
doi_str_mv | 10.1109/CCST.2011.6095949 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6095949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6095949</ieee_id><sourcerecordid>6095949</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-87bb0e80c521a56e29e0d7cb5eb81efac624eecac51009eff5a96624c237550e3</originalsourceid><addsrcrecordid>eNpFkN1Kw0AUhNc_MK0-gHizL5B6ziabzV5KsCoUVKzX5WRzIqux1d2t0Lc3aMGrgW-GYRghLhBmiGCvmuZ5OVOAOKvAalvaAzHBUhsDFgo8FJlCXeRgSnX0b6jiWGQIBvNKG3UqJjG-wUgN1pl4egzceZf8-lX64KP83g5rDtT6waedTBvZ-cAuSUqJ3HuULUXu5GYtv7b0Gwk8UBpRz5S2geOZOOlpiHy-16l4md8sm7t88XB731wvco9Gp7w2bQtcg9MKSVesLENnXKu5rZF7cpUqmR05jQCW-16TrUbmxuFaAxdTcfnX65l59Rn8B4Xdav9L8QNpVlRP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predicting iris vulnerability to direct attacks based on quality related features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ortiz-Lopez, Jaime ; Galbally, J. ; Fierrez, J. ; Ortega-Garcia, J.</creator><creatorcontrib>Ortiz-Lopez, Jaime ; Galbally, J. ; Fierrez, J. ; Ortega-Garcia, J.</creatorcontrib><description>A new vulnerability prediction scheme for direct attacks to iris recognition systems is presented. The objective of the novel technique, based on a 22 quality related parameterization, is to discriminate beforehand between real samples which are easy to spoof and those more resistant to this type of threat. The system is tested on a database comprising over 1,600 real and fake iris images proving to have a high discriminative power reaching an overall rate of 84% correctly classified real samples for the dataset considered. Furthermore, the detection method presented has the added advantage of needing just one iris image (the same used for verification) to decide its degree of robustness against spoofing attacks.</description><identifier>ISSN: 1071-6572</identifier><identifier>ISBN: 1457709023</identifier><identifier>ISBN: 9781457709029</identifier><identifier>EISSN: 2153-0742</identifier><identifier>EISBN: 1457709031</identifier><identifier>EISBN: 9781457709036</identifier><identifier>DOI: 10.1109/CCST.2011.6095949</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; Image segmentation ; Iris ; Iris recognition ; Quality assessment ; Robustness ; Security ; Vulnerability</subject><ispartof>2011 Carnahan Conference on Security Technology, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6095949$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6095949$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ortiz-Lopez, Jaime</creatorcontrib><creatorcontrib>Galbally, J.</creatorcontrib><creatorcontrib>Fierrez, J.</creatorcontrib><creatorcontrib>Ortega-Garcia, J.</creatorcontrib><title>Predicting iris vulnerability to direct attacks based on quality related features</title><title>2011 Carnahan Conference on Security Technology</title><addtitle>CCST</addtitle><description>A new vulnerability prediction scheme for direct attacks to iris recognition systems is presented. The objective of the novel technique, based on a 22 quality related parameterization, is to discriminate beforehand between real samples which are easy to spoof and those more resistant to this type of threat. The system is tested on a database comprising over 1,600 real and fake iris images proving to have a high discriminative power reaching an overall rate of 84% correctly classified real samples for the dataset considered. Furthermore, the detection method presented has the added advantage of needing just one iris image (the same used for verification) to decide its degree of robustness against spoofing attacks.</description><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Iris</subject><subject>Iris recognition</subject><subject>Quality assessment</subject><subject>Robustness</subject><subject>Security</subject><subject>Vulnerability</subject><issn>1071-6572</issn><issn>2153-0742</issn><isbn>1457709023</isbn><isbn>9781457709029</isbn><isbn>1457709031</isbn><isbn>9781457709036</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkN1Kw0AUhNc_MK0-gHizL5B6ziabzV5KsCoUVKzX5WRzIqux1d2t0Lc3aMGrgW-GYRghLhBmiGCvmuZ5OVOAOKvAalvaAzHBUhsDFgo8FJlCXeRgSnX0b6jiWGQIBvNKG3UqJjG-wUgN1pl4egzceZf8-lX64KP83g5rDtT6waedTBvZ-cAuSUqJ3HuULUXu5GYtv7b0Gwk8UBpRz5S2geOZOOlpiHy-16l4md8sm7t88XB731wvco9Gp7w2bQtcg9MKSVesLENnXKu5rZF7cpUqmR05jQCW-16TrUbmxuFaAxdTcfnX65l59Rn8B4Xdav9L8QNpVlRP</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Ortiz-Lopez, Jaime</creator><creator>Galbally, J.</creator><creator>Fierrez, J.</creator><creator>Ortega-Garcia, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201110</creationdate><title>Predicting iris vulnerability to direct attacks based on quality related features</title><author>Ortiz-Lopez, Jaime ; Galbally, J. ; Fierrez, J. ; Ortega-Garcia, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-87bb0e80c521a56e29e0d7cb5eb81efac624eecac51009eff5a96624c237550e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Iris</topic><topic>Iris recognition</topic><topic>Quality assessment</topic><topic>Robustness</topic><topic>Security</topic><topic>Vulnerability</topic><toplevel>online_resources</toplevel><creatorcontrib>Ortiz-Lopez, Jaime</creatorcontrib><creatorcontrib>Galbally, J.</creatorcontrib><creatorcontrib>Fierrez, J.</creatorcontrib><creatorcontrib>Ortega-Garcia, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ortiz-Lopez, Jaime</au><au>Galbally, J.</au><au>Fierrez, J.</au><au>Ortega-Garcia, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predicting iris vulnerability to direct attacks based on quality related features</atitle><btitle>2011 Carnahan Conference on Security Technology</btitle><stitle>CCST</stitle><date>2011-10</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1071-6572</issn><eissn>2153-0742</eissn><isbn>1457709023</isbn><isbn>9781457709029</isbn><eisbn>1457709031</eisbn><eisbn>9781457709036</eisbn><abstract>A new vulnerability prediction scheme for direct attacks to iris recognition systems is presented. The objective of the novel technique, based on a 22 quality related parameterization, is to discriminate beforehand between real samples which are easy to spoof and those more resistant to this type of threat. The system is tested on a database comprising over 1,600 real and fake iris images proving to have a high discriminative power reaching an overall rate of 84% correctly classified real samples for the dataset considered. Furthermore, the detection method presented has the added advantage of needing just one iris image (the same used for verification) to decide its degree of robustness against spoofing attacks.</abstract><pub>IEEE</pub><doi>10.1109/CCST.2011.6095949</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1071-6572 |
ispartof | 2011 Carnahan Conference on Security Technology, 2011, p.1-6 |
issn | 1071-6572 2153-0742 |
language | eng |
recordid | cdi_ieee_primary_6095949 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feature extraction Image segmentation Iris Iris recognition Quality assessment Robustness Security Vulnerability |
title | Predicting iris vulnerability to direct attacks based on quality related features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predicting%20iris%20vulnerability%20to%20direct%20attacks%20based%20on%20quality%20related%20features&rft.btitle=2011%20Carnahan%20Conference%20on%20Security%20Technology&rft.au=Ortiz-Lopez,%20Jaime&rft.date=2011-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1071-6572&rft.eissn=2153-0742&rft.isbn=1457709023&rft.isbn_list=9781457709029&rft_id=info:doi/10.1109/CCST.2011.6095949&rft_dat=%3Cieee_6IE%3E6095949%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457709031&rft.eisbn_list=9781457709036&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6095949&rfr_iscdi=true |