Positive and negative obstacle detection using the HLD classifier

Autonomous robots must be able to detect hazardous terrain even when sensor data is noisy and incomplete. In particular, negative obstacles such as cliffs or stairs often cannot be sensed directly; rather, their presence must be inferred. In this paper, we describe the height-length-density (HLD) te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Morton, Ryan D., Olson, Edwin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1584
container_issue
container_start_page 1579
container_title
container_volume
creator Morton, Ryan D.
Olson, Edwin
description Autonomous robots must be able to detect hazardous terrain even when sensor data is noisy and incomplete. In particular, negative obstacles such as cliffs or stairs often cannot be sensed directly; rather, their presence must be inferred. In this paper, we describe the height-length-density (HLD) terrain classifier that generalizes some prior methods and provides a unified mechanism for detecting both positive and negative obstacles. The classifier utilizes three novel features that inherently deal with partial observability. The structure of the classifier allows the system designer to encode the capabilities of the vehicle as well as a notion of risk, making our approach applicable to virtually any vehicle. We evaluate our method in an indoor/outdoor environment, which includes several perceptually difficult real-world cases, and show that our approach out-performs current methods.
doi_str_mv 10.1109/IROS.2011.6095142
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6095142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6095142</ieee_id><sourcerecordid>6095142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-57137f3fb553ff32289de0a2f98948a5d244f00b0485bf377a5847b009c3b1163</originalsourceid><addsrcrecordid>eNo9kNtKAzEUReMNrHU-QHzJD8x4Tu55LLXawkDFy3NJZpIaGWekGQX_XtHq02azYLHZhFwgVIhgr1b364eKAWKlwEoU7IAUVhtUyIwQUppDMmEoeQlGqSNy9geEPP4H0pySIucXAEDQ1lg1IbO7IacxfQTq-pb2Yet-yuDz6Jou0DaMoRnT0NP3nPotHZ8DXdbXtOlczimmsDsnJ9F1ORT7nJKnm8XjfFnW69vVfFaXDUM7llIj15FHLyWPkTNmbBvAsfi9QxgnWyZEBPAgjPSRa-2kEdoD2IZ7RMWn5PLXm0IIm7ddenW7z83-Df4FMtBNbg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Positive and negative obstacle detection using the HLD classifier</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Morton, Ryan D. ; Olson, Edwin</creator><creatorcontrib>Morton, Ryan D. ; Olson, Edwin</creatorcontrib><description>Autonomous robots must be able to detect hazardous terrain even when sensor data is noisy and incomplete. In particular, negative obstacles such as cliffs or stairs often cannot be sensed directly; rather, their presence must be inferred. In this paper, we describe the height-length-density (HLD) terrain classifier that generalizes some prior methods and provides a unified mechanism for detecting both positive and negative obstacles. The classifier utilizes three novel features that inherently deal with partial observability. The structure of the classifier allows the system designer to encode the capabilities of the vehicle as well as a notion of risk, making our approach applicable to virtually any vehicle. We evaluate our method in an indoor/outdoor environment, which includes several perceptually difficult real-world cases, and show that our approach out-performs current methods.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1612844545</identifier><identifier>ISBN: 9781612844541</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781612844558</identifier><identifier>EISBN: 1612844553</identifier><identifier>EISBN: 9781612844565</identifier><identifier>EISBN: 1612844561</identifier><identifier>DOI: 10.1109/IROS.2011.6095142</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; Kinematics ; Message passing ; Robot sensing systems ; Solid modeling ; Three dimensional displays</subject><ispartof>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, p.1579-1584</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-57137f3fb553ff32289de0a2f98948a5d244f00b0485bf377a5847b009c3b1163</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6095142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6095142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morton, Ryan D.</creatorcontrib><creatorcontrib>Olson, Edwin</creatorcontrib><title>Positive and negative obstacle detection using the HLD classifier</title><title>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>Autonomous robots must be able to detect hazardous terrain even when sensor data is noisy and incomplete. In particular, negative obstacles such as cliffs or stairs often cannot be sensed directly; rather, their presence must be inferred. In this paper, we describe the height-length-density (HLD) terrain classifier that generalizes some prior methods and provides a unified mechanism for detecting both positive and negative obstacles. The classifier utilizes three novel features that inherently deal with partial observability. The structure of the classifier allows the system designer to encode the capabilities of the vehicle as well as a notion of risk, making our approach applicable to virtually any vehicle. We evaluate our method in an indoor/outdoor environment, which includes several perceptually difficult real-world cases, and show that our approach out-performs current methods.</description><subject>Feature extraction</subject><subject>Kinematics</subject><subject>Message passing</subject><subject>Robot sensing systems</subject><subject>Solid modeling</subject><subject>Three dimensional displays</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1612844545</isbn><isbn>9781612844541</isbn><isbn>9781612844558</isbn><isbn>1612844553</isbn><isbn>9781612844565</isbn><isbn>1612844561</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEUReMNrHU-QHzJD8x4Tu55LLXawkDFy3NJZpIaGWekGQX_XtHq02azYLHZhFwgVIhgr1b364eKAWKlwEoU7IAUVhtUyIwQUppDMmEoeQlGqSNy9geEPP4H0pySIucXAEDQ1lg1IbO7IacxfQTq-pb2Yet-yuDz6Jou0DaMoRnT0NP3nPotHZ8DXdbXtOlczimmsDsnJ9F1ORT7nJKnm8XjfFnW69vVfFaXDUM7llIj15FHLyWPkTNmbBvAsfi9QxgnWyZEBPAgjPSRa-2kEdoD2IZ7RMWn5PLXm0IIm7ddenW7z83-Df4FMtBNbg</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Morton, Ryan D.</creator><creator>Olson, Edwin</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>Positive and negative obstacle detection using the HLD classifier</title><author>Morton, Ryan D. ; Olson, Edwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-57137f3fb553ff32289de0a2f98948a5d244f00b0485bf377a5847b009c3b1163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Feature extraction</topic><topic>Kinematics</topic><topic>Message passing</topic><topic>Robot sensing systems</topic><topic>Solid modeling</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Morton, Ryan D.</creatorcontrib><creatorcontrib>Olson, Edwin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morton, Ryan D.</au><au>Olson, Edwin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Positive and negative obstacle detection using the HLD classifier</atitle><btitle>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2011-09</date><risdate>2011</risdate><spage>1579</spage><epage>1584</epage><pages>1579-1584</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1612844545</isbn><isbn>9781612844541</isbn><eisbn>9781612844558</eisbn><eisbn>1612844553</eisbn><eisbn>9781612844565</eisbn><eisbn>1612844561</eisbn><abstract>Autonomous robots must be able to detect hazardous terrain even when sensor data is noisy and incomplete. In particular, negative obstacles such as cliffs or stairs often cannot be sensed directly; rather, their presence must be inferred. In this paper, we describe the height-length-density (HLD) terrain classifier that generalizes some prior methods and provides a unified mechanism for detecting both positive and negative obstacles. The classifier utilizes three novel features that inherently deal with partial observability. The structure of the classifier allows the system designer to encode the capabilities of the vehicle as well as a notion of risk, making our approach applicable to virtually any vehicle. We evaluate our method in an indoor/outdoor environment, which includes several perceptually difficult real-world cases, and show that our approach out-performs current methods.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2011.6095142</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, p.1579-1584
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6095142
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feature extraction
Kinematics
Message passing
Robot sensing systems
Solid modeling
Three dimensional displays
title Positive and negative obstacle detection using the HLD classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Positive%20and%20negative%20obstacle%20detection%20using%20the%20HLD%20classifier&rft.btitle=2011%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Morton,%20Ryan%20D.&rft.date=2011-09&rft.spage=1579&rft.epage=1584&rft.pages=1579-1584&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1612844545&rft.isbn_list=9781612844541&rft_id=info:doi/10.1109/IROS.2011.6095142&rft_dat=%3Cieee_6IE%3E6095142%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612844558&rft.eisbn_list=1612844553&rft.eisbn_list=9781612844565&rft.eisbn_list=1612844561&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6095142&rfr_iscdi=true