Please do not disturb! Minimum interference coverage for social robots

In this paper we address the problem of human-aware coverage planning. We first present an approach to learn and model human activity events in a probabilistic spatio-temporal map using spatial Poisson processes. We then propose a coverage planner for paths that minimize the interference probability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Diego, Gian, Arras, Tipaldi Kai O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1973
container_issue
container_start_page 1968
container_title
container_volume
creator Diego, Gian
Arras, Tipaldi Kai O.
description In this paper we address the problem of human-aware coverage planning. We first present an approach to learn and model human activity events in a probabilistic spatio-temporal map using spatial Poisson processes. We then propose a coverage planner for paths that minimize the interference probability with people. To this end, we pose the coverage problem as an asymmetric traveling salesman problem with time-dependent costs (ATDTSP) derived from the information in the map. The approach enables a noisy robotic vacuum in a home scenario, for instance, to learn to avoid busy places at certain times of the day such as the kitchen at lunch time. We evaluate the planner using a simulator of people in a home environment to generate typical weekday activity patterns. In the experiments with a regular TSP planner and two modified TSP heuristics, the proposed coverage planner significantly reduces interference with people in terms of number of disturbed persons and overall disturbance time.
doi_str_mv 10.1109/IROS.2011.6094867
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6094867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6094867</ieee_id><sourcerecordid>6094867</sourcerecordid><originalsourceid>FETCH-LOGICAL-i148t-4feee14d9aef882709460852faeb27c111d21e88d1f20329c98c38bde84d24023</originalsourceid><addsrcrecordid>eNo9kM1KAzEUheMfWGsfQNzEB5gxN5PJ3CyltFqoVPxZl8zkRiLtRJKp4NtbsLo6iw8-zjmMXYEoAYS5XTyvXkopAEotjELdHLGJaRA0SFSqrvGYjSTUVSFQ6xN28QdUffoPajxnk5w_hBAgGoNGj9j8aUM2E3eR93HgLuRhl9ob_hj6sN1teegHSp4S9R3xLn5Rsu_EfUw8xy7YDU-xjUO-ZGfebjJNDjlmb_PZ6_ShWK7uF9O7ZRFA4VAoT0SgnLHkEWWzn6L3vaS31MqmAwAngRAdeCkqaTqDXYWtI1ROKiGrMbv-9Ya9aP2Zwtam7_XhkuoHR_9QRA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Please do not disturb! Minimum interference coverage for social robots</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Diego, Gian ; Arras, Tipaldi Kai O.</creator><creatorcontrib>Diego, Gian ; Arras, Tipaldi Kai O.</creatorcontrib><description>In this paper we address the problem of human-aware coverage planning. We first present an approach to learn and model human activity events in a probabilistic spatio-temporal map using spatial Poisson processes. We then propose a coverage planner for paths that minimize the interference probability with people. To this end, we pose the coverage problem as an asymmetric traveling salesman problem with time-dependent costs (ATDTSP) derived from the information in the map. The approach enables a noisy robotic vacuum in a home scenario, for instance, to learn to avoid busy places at certain times of the day such as the kitchen at lunch time. We evaluate the planner using a simulator of people in a home environment to generate typical weekday activity patterns. In the experiments with a regular TSP planner and two modified TSP heuristics, the proposed coverage planner significantly reduces interference with people in terms of number of disturbed persons and overall disturbance time.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1612844545</identifier><identifier>ISBN: 9781612844541</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781612844558</identifier><identifier>EISBN: 1612844553</identifier><identifier>EISBN: 9781612844565</identifier><identifier>EISBN: 1612844561</identifier><identifier>DOI: 10.1109/IROS.2011.6094867</identifier><language>eng</language><publisher>IEEE</publisher><subject>Hidden Markov models ; Humans ; Interference ; Planning ; Robot kinematics ; Robot sensing systems</subject><ispartof>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, p.1968-1973</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6094867$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6094867$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Diego, Gian</creatorcontrib><creatorcontrib>Arras, Tipaldi Kai O.</creatorcontrib><title>Please do not disturb! Minimum interference coverage for social robots</title><title>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In this paper we address the problem of human-aware coverage planning. We first present an approach to learn and model human activity events in a probabilistic spatio-temporal map using spatial Poisson processes. We then propose a coverage planner for paths that minimize the interference probability with people. To this end, we pose the coverage problem as an asymmetric traveling salesman problem with time-dependent costs (ATDTSP) derived from the information in the map. The approach enables a noisy robotic vacuum in a home scenario, for instance, to learn to avoid busy places at certain times of the day such as the kitchen at lunch time. We evaluate the planner using a simulator of people in a home environment to generate typical weekday activity patterns. In the experiments with a regular TSP planner and two modified TSP heuristics, the proposed coverage planner significantly reduces interference with people in terms of number of disturbed persons and overall disturbance time.</description><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Interference</subject><subject>Planning</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1612844545</isbn><isbn>9781612844541</isbn><isbn>9781612844558</isbn><isbn>1612844553</isbn><isbn>9781612844565</isbn><isbn>1612844561</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1KAzEUheMfWGsfQNzEB5gxN5PJ3CyltFqoVPxZl8zkRiLtRJKp4NtbsLo6iw8-zjmMXYEoAYS5XTyvXkopAEotjELdHLGJaRA0SFSqrvGYjSTUVSFQ6xN28QdUffoPajxnk5w_hBAgGoNGj9j8aUM2E3eR93HgLuRhl9ob_hj6sN1teegHSp4S9R3xLn5Rsu_EfUw8xy7YDU-xjUO-ZGfebjJNDjlmb_PZ6_ShWK7uF9O7ZRFA4VAoT0SgnLHkEWWzn6L3vaS31MqmAwAngRAdeCkqaTqDXYWtI1ROKiGrMbv-9Ya9aP2Zwtam7_XhkuoHR_9QRA</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Diego, Gian</creator><creator>Arras, Tipaldi Kai O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>Please do not disturb! Minimum interference coverage for social robots</title><author>Diego, Gian ; Arras, Tipaldi Kai O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i148t-4feee14d9aef882709460852faeb27c111d21e88d1f20329c98c38bde84d24023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Interference</topic><topic>Planning</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Diego, Gian</creatorcontrib><creatorcontrib>Arras, Tipaldi Kai O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diego, Gian</au><au>Arras, Tipaldi Kai O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Please do not disturb! Minimum interference coverage for social robots</atitle><btitle>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2011-09</date><risdate>2011</risdate><spage>1968</spage><epage>1973</epage><pages>1968-1973</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1612844545</isbn><isbn>9781612844541</isbn><eisbn>9781612844558</eisbn><eisbn>1612844553</eisbn><eisbn>9781612844565</eisbn><eisbn>1612844561</eisbn><abstract>In this paper we address the problem of human-aware coverage planning. We first present an approach to learn and model human activity events in a probabilistic spatio-temporal map using spatial Poisson processes. We then propose a coverage planner for paths that minimize the interference probability with people. To this end, we pose the coverage problem as an asymmetric traveling salesman problem with time-dependent costs (ATDTSP) derived from the information in the map. The approach enables a noisy robotic vacuum in a home scenario, for instance, to learn to avoid busy places at certain times of the day such as the kitchen at lunch time. We evaluate the planner using a simulator of people in a home environment to generate typical weekday activity patterns. In the experiments with a regular TSP planner and two modified TSP heuristics, the proposed coverage planner significantly reduces interference with people in terms of number of disturbed persons and overall disturbance time.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2011.6094867</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, p.1968-1973
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6094867
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Hidden Markov models
Humans
Interference
Planning
Robot kinematics
Robot sensing systems
title Please do not disturb! Minimum interference coverage for social robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Please%20do%20not%20disturb!%20Minimum%20interference%20coverage%20for%20social%20robots&rft.btitle=2011%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Diego,%20Gian&rft.date=2011-09&rft.spage=1968&rft.epage=1973&rft.pages=1968-1973&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1612844545&rft.isbn_list=9781612844541&rft_id=info:doi/10.1109/IROS.2011.6094867&rft_dat=%3Cieee_6IE%3E6094867%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612844558&rft.eisbn_list=1612844553&rft.eisbn_list=9781612844565&rft.eisbn_list=1612844561&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6094867&rfr_iscdi=true