Please do not disturb! Minimum interference coverage for social robots
In this paper we address the problem of human-aware coverage planning. We first present an approach to learn and model human activity events in a probabilistic spatio-temporal map using spatial Poisson processes. We then propose a coverage planner for paths that minimize the interference probability...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1973 |
---|---|
container_issue | |
container_start_page | 1968 |
container_title | |
container_volume | |
creator | Diego, Gian Arras, Tipaldi Kai O. |
description | In this paper we address the problem of human-aware coverage planning. We first present an approach to learn and model human activity events in a probabilistic spatio-temporal map using spatial Poisson processes. We then propose a coverage planner for paths that minimize the interference probability with people. To this end, we pose the coverage problem as an asymmetric traveling salesman problem with time-dependent costs (ATDTSP) derived from the information in the map. The approach enables a noisy robotic vacuum in a home scenario, for instance, to learn to avoid busy places at certain times of the day such as the kitchen at lunch time. We evaluate the planner using a simulator of people in a home environment to generate typical weekday activity patterns. In the experiments with a regular TSP planner and two modified TSP heuristics, the proposed coverage planner significantly reduces interference with people in terms of number of disturbed persons and overall disturbance time. |
doi_str_mv | 10.1109/IROS.2011.6094867 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6094867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6094867</ieee_id><sourcerecordid>6094867</sourcerecordid><originalsourceid>FETCH-LOGICAL-i148t-4feee14d9aef882709460852faeb27c111d21e88d1f20329c98c38bde84d24023</originalsourceid><addsrcrecordid>eNo9kM1KAzEUheMfWGsfQNzEB5gxN5PJ3CyltFqoVPxZl8zkRiLtRJKp4NtbsLo6iw8-zjmMXYEoAYS5XTyvXkopAEotjELdHLGJaRA0SFSqrvGYjSTUVSFQ6xN28QdUffoPajxnk5w_hBAgGoNGj9j8aUM2E3eR93HgLuRhl9ob_hj6sN1teegHSp4S9R3xLn5Rsu_EfUw8xy7YDU-xjUO-ZGfebjJNDjlmb_PZ6_ShWK7uF9O7ZRFA4VAoT0SgnLHkEWWzn6L3vaS31MqmAwAngRAdeCkqaTqDXYWtI1ROKiGrMbv-9Ya9aP2Zwtam7_XhkuoHR_9QRA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Please do not disturb! Minimum interference coverage for social robots</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Diego, Gian ; Arras, Tipaldi Kai O.</creator><creatorcontrib>Diego, Gian ; Arras, Tipaldi Kai O.</creatorcontrib><description>In this paper we address the problem of human-aware coverage planning. We first present an approach to learn and model human activity events in a probabilistic spatio-temporal map using spatial Poisson processes. We then propose a coverage planner for paths that minimize the interference probability with people. To this end, we pose the coverage problem as an asymmetric traveling salesman problem with time-dependent costs (ATDTSP) derived from the information in the map. The approach enables a noisy robotic vacuum in a home scenario, for instance, to learn to avoid busy places at certain times of the day such as the kitchen at lunch time. We evaluate the planner using a simulator of people in a home environment to generate typical weekday activity patterns. In the experiments with a regular TSP planner and two modified TSP heuristics, the proposed coverage planner significantly reduces interference with people in terms of number of disturbed persons and overall disturbance time.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1612844545</identifier><identifier>ISBN: 9781612844541</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781612844558</identifier><identifier>EISBN: 1612844553</identifier><identifier>EISBN: 9781612844565</identifier><identifier>EISBN: 1612844561</identifier><identifier>DOI: 10.1109/IROS.2011.6094867</identifier><language>eng</language><publisher>IEEE</publisher><subject>Hidden Markov models ; Humans ; Interference ; Planning ; Robot kinematics ; Robot sensing systems</subject><ispartof>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, p.1968-1973</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6094867$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6094867$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Diego, Gian</creatorcontrib><creatorcontrib>Arras, Tipaldi Kai O.</creatorcontrib><title>Please do not disturb! Minimum interference coverage for social robots</title><title>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In this paper we address the problem of human-aware coverage planning. We first present an approach to learn and model human activity events in a probabilistic spatio-temporal map using spatial Poisson processes. We then propose a coverage planner for paths that minimize the interference probability with people. To this end, we pose the coverage problem as an asymmetric traveling salesman problem with time-dependent costs (ATDTSP) derived from the information in the map. The approach enables a noisy robotic vacuum in a home scenario, for instance, to learn to avoid busy places at certain times of the day such as the kitchen at lunch time. We evaluate the planner using a simulator of people in a home environment to generate typical weekday activity patterns. In the experiments with a regular TSP planner and two modified TSP heuristics, the proposed coverage planner significantly reduces interference with people in terms of number of disturbed persons and overall disturbance time.</description><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Interference</subject><subject>Planning</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1612844545</isbn><isbn>9781612844541</isbn><isbn>9781612844558</isbn><isbn>1612844553</isbn><isbn>9781612844565</isbn><isbn>1612844561</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1KAzEUheMfWGsfQNzEB5gxN5PJ3CyltFqoVPxZl8zkRiLtRJKp4NtbsLo6iw8-zjmMXYEoAYS5XTyvXkopAEotjELdHLGJaRA0SFSqrvGYjSTUVSFQ6xN28QdUffoPajxnk5w_hBAgGoNGj9j8aUM2E3eR93HgLuRhl9ob_hj6sN1teegHSp4S9R3xLn5Rsu_EfUw8xy7YDU-xjUO-ZGfebjJNDjlmb_PZ6_ShWK7uF9O7ZRFA4VAoT0SgnLHkEWWzn6L3vaS31MqmAwAngRAdeCkqaTqDXYWtI1ROKiGrMbv-9Ya9aP2Zwtam7_XhkuoHR_9QRA</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Diego, Gian</creator><creator>Arras, Tipaldi Kai O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>Please do not disturb! Minimum interference coverage for social robots</title><author>Diego, Gian ; Arras, Tipaldi Kai O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i148t-4feee14d9aef882709460852faeb27c111d21e88d1f20329c98c38bde84d24023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Interference</topic><topic>Planning</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Diego, Gian</creatorcontrib><creatorcontrib>Arras, Tipaldi Kai O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diego, Gian</au><au>Arras, Tipaldi Kai O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Please do not disturb! Minimum interference coverage for social robots</atitle><btitle>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2011-09</date><risdate>2011</risdate><spage>1968</spage><epage>1973</epage><pages>1968-1973</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1612844545</isbn><isbn>9781612844541</isbn><eisbn>9781612844558</eisbn><eisbn>1612844553</eisbn><eisbn>9781612844565</eisbn><eisbn>1612844561</eisbn><abstract>In this paper we address the problem of human-aware coverage planning. We first present an approach to learn and model human activity events in a probabilistic spatio-temporal map using spatial Poisson processes. We then propose a coverage planner for paths that minimize the interference probability with people. To this end, we pose the coverage problem as an asymmetric traveling salesman problem with time-dependent costs (ATDTSP) derived from the information in the map. The approach enables a noisy robotic vacuum in a home scenario, for instance, to learn to avoid busy places at certain times of the day such as the kitchen at lunch time. We evaluate the planner using a simulator of people in a home environment to generate typical weekday activity patterns. In the experiments with a regular TSP planner and two modified TSP heuristics, the proposed coverage planner significantly reduces interference with people in terms of number of disturbed persons and overall disturbance time.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2011.6094867</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, p.1968-1973 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6094867 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Hidden Markov models Humans Interference Planning Robot kinematics Robot sensing systems |
title | Please do not disturb! Minimum interference coverage for social robots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Please%20do%20not%20disturb!%20Minimum%20interference%20coverage%20for%20social%20robots&rft.btitle=2011%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Diego,%20Gian&rft.date=2011-09&rft.spage=1968&rft.epage=1973&rft.pages=1968-1973&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1612844545&rft.isbn_list=9781612844541&rft_id=info:doi/10.1109/IROS.2011.6094867&rft_dat=%3Cieee_6IE%3E6094867%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612844558&rft.eisbn_list=1612844553&rft.eisbn_list=9781612844565&rft.eisbn_list=1612844561&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6094867&rfr_iscdi=true |