Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios

This paper proposes a autocorrelation-based method to classify traffic patterns of primary channels in cognitive radio systems to allow a more accurate prediction of the future idle times. The classification algorithm uses binary information collected by spectrum sensing. It searches periodicity fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hoyhtya, M., Sarvanko, H., Matinmikko, M., Mammela, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Hoyhtya, M.
Sarvanko, H.
Matinmikko, M.
Mammela, A.
description This paper proposes a autocorrelation-based method to classify traffic patterns of primary channels in cognitive radio systems to allow a more accurate prediction of the future idle times. The classification algorithm uses binary information collected by spectrum sensing. It searches periodicity from the sensed binary pattern using a discrete autocorrelation function. Errors that are caused by noise and possible false sensing reports are filtered away from the autocorrelation function. We tested the method with Pare to, Weibull, and exponentially distributed stochastic traffic, and with deterministic traffic. The proposed method finds the type of traffic with a high probability when the channels of interest include both stochastic and deterministic traffic. Stochastic traffic is always classified right and regarding the deterministic traffic the probability of correct classification is over 95% when the probability of missed detection or probability of false alarms is below 10%.
doi_str_mv 10.1109/VETECF.2011.6092876
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6092876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6092876</ieee_id><sourcerecordid>6092876</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c3a9702a43fc7de22e70b1c67741bc79ef25f1e76cbab316052eae26663e08ab3</originalsourceid><addsrcrecordid>eNo1kNtKxDAYhOMJrGufYG_6Aq05NX9zuZauLiwoUr1d0vSPRGorSRV8e4uuczMwM3wXQ8ia0YIxqm9emraptwWnjBWKal6BOiFXTHIpK8GVOCUJLwFyLlV5RlIN1X9X0XOSLAiaCyqqS5LG-EYXKaVBy4TsNp_zZKcQcDCzn8b81kTsszYY57zNHs08YxizejAx-iX5HWVuClk9vY5-9l-YPZneT_GaXDgzREyPviLP26at7_P9w92u3uxzz6CccyuMBsqNFM5Cj5wj0I5ZBSBZZ0Gj46VjCMp2phNM0ZKjQa6UEkirJVqR9R_XI-LhI_h3E74Px1fED0O9Ups</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hoyhtya, M. ; Sarvanko, H. ; Matinmikko, M. ; Mammela, A.</creator><creatorcontrib>Hoyhtya, M. ; Sarvanko, H. ; Matinmikko, M. ; Mammela, A.</creatorcontrib><description>This paper proposes a autocorrelation-based method to classify traffic patterns of primary channels in cognitive radio systems to allow a more accurate prediction of the future idle times. The classification algorithm uses binary information collected by spectrum sensing. It searches periodicity from the sensed binary pattern using a discrete autocorrelation function. Errors that are caused by noise and possible false sensing reports are filtered away from the autocorrelation function. We tested the method with Pare to, Weibull, and exponentially distributed stochastic traffic, and with deterministic traffic. The proposed method finds the type of traffic with a high probability when the channels of interest include both stochastic and deterministic traffic. Stochastic traffic is always classified right and regarding the deterministic traffic the probability of correct classification is over 95% when the probability of missed detection or probability of false alarms is below 10%.</description><identifier>ISSN: 1090-3038</identifier><identifier>ISBN: 9781424483280</identifier><identifier>ISBN: 142448328X</identifier><identifier>EISSN: 2577-2465</identifier><identifier>EISBN: 1424483263</identifier><identifier>EISBN: 9781424483266</identifier><identifier>EISBN: 9781424483273</identifier><identifier>EISBN: 1424483255</identifier><identifier>EISBN: 9781424483259</identifier><identifier>EISBN: 1424483271</identifier><identifier>DOI: 10.1109/VETECF.2011.6092876</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cognitive radio ; Correlation ; Filtering ; Filtering algorithms ; Sensors ; Stochastic processes ; Traffic control</subject><ispartof>2011 IEEE Vehicular Technology Conference (VTC Fall), 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6092876$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6092876$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoyhtya, M.</creatorcontrib><creatorcontrib>Sarvanko, H.</creatorcontrib><creatorcontrib>Matinmikko, M.</creatorcontrib><creatorcontrib>Mammela, A.</creatorcontrib><title>Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios</title><title>2011 IEEE Vehicular Technology Conference (VTC Fall)</title><addtitle>VETECF</addtitle><description>This paper proposes a autocorrelation-based method to classify traffic patterns of primary channels in cognitive radio systems to allow a more accurate prediction of the future idle times. The classification algorithm uses binary information collected by spectrum sensing. It searches periodicity from the sensed binary pattern using a discrete autocorrelation function. Errors that are caused by noise and possible false sensing reports are filtered away from the autocorrelation function. We tested the method with Pare to, Weibull, and exponentially distributed stochastic traffic, and with deterministic traffic. The proposed method finds the type of traffic with a high probability when the channels of interest include both stochastic and deterministic traffic. Stochastic traffic is always classified right and regarding the deterministic traffic the probability of correct classification is over 95% when the probability of missed detection or probability of false alarms is below 10%.</description><subject>Cognitive radio</subject><subject>Correlation</subject><subject>Filtering</subject><subject>Filtering algorithms</subject><subject>Sensors</subject><subject>Stochastic processes</subject><subject>Traffic control</subject><issn>1090-3038</issn><issn>2577-2465</issn><isbn>9781424483280</isbn><isbn>142448328X</isbn><isbn>1424483263</isbn><isbn>9781424483266</isbn><isbn>9781424483273</isbn><isbn>1424483255</isbn><isbn>9781424483259</isbn><isbn>1424483271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKxDAYhOMJrGufYG_6Aq05NX9zuZauLiwoUr1d0vSPRGorSRV8e4uuczMwM3wXQ8ia0YIxqm9emraptwWnjBWKal6BOiFXTHIpK8GVOCUJLwFyLlV5RlIN1X9X0XOSLAiaCyqqS5LG-EYXKaVBy4TsNp_zZKcQcDCzn8b81kTsszYY57zNHs08YxizejAx-iX5HWVuClk9vY5-9l-YPZneT_GaXDgzREyPviLP26at7_P9w92u3uxzz6CccyuMBsqNFM5Cj5wj0I5ZBSBZZ0Gj46VjCMp2phNM0ZKjQa6UEkirJVqR9R_XI-LhI_h3E74Px1fED0O9Ups</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Hoyhtya, M.</creator><creator>Sarvanko, H.</creator><creator>Matinmikko, M.</creator><creator>Mammela, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios</title><author>Hoyhtya, M. ; Sarvanko, H. ; Matinmikko, M. ; Mammela, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c3a9702a43fc7de22e70b1c67741bc79ef25f1e76cbab316052eae26663e08ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cognitive radio</topic><topic>Correlation</topic><topic>Filtering</topic><topic>Filtering algorithms</topic><topic>Sensors</topic><topic>Stochastic processes</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoyhtya, M.</creatorcontrib><creatorcontrib>Sarvanko, H.</creatorcontrib><creatorcontrib>Matinmikko, M.</creatorcontrib><creatorcontrib>Mammela, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoyhtya, M.</au><au>Sarvanko, H.</au><au>Matinmikko, M.</au><au>Mammela, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios</atitle><btitle>2011 IEEE Vehicular Technology Conference (VTC Fall)</btitle><stitle>VETECF</stitle><date>2011-09</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1090-3038</issn><eissn>2577-2465</eissn><isbn>9781424483280</isbn><isbn>142448328X</isbn><eisbn>1424483263</eisbn><eisbn>9781424483266</eisbn><eisbn>9781424483273</eisbn><eisbn>1424483255</eisbn><eisbn>9781424483259</eisbn><eisbn>1424483271</eisbn><abstract>This paper proposes a autocorrelation-based method to classify traffic patterns of primary channels in cognitive radio systems to allow a more accurate prediction of the future idle times. The classification algorithm uses binary information collected by spectrum sensing. It searches periodicity from the sensed binary pattern using a discrete autocorrelation function. Errors that are caused by noise and possible false sensing reports are filtered away from the autocorrelation function. We tested the method with Pare to, Weibull, and exponentially distributed stochastic traffic, and with deterministic traffic. The proposed method finds the type of traffic with a high probability when the channels of interest include both stochastic and deterministic traffic. Stochastic traffic is always classified right and regarding the deterministic traffic the probability of correct classification is over 95% when the probability of missed detection or probability of false alarms is below 10%.</abstract><pub>IEEE</pub><doi>10.1109/VETECF.2011.6092876</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1090-3038
ispartof 2011 IEEE Vehicular Technology Conference (VTC Fall), 2011, p.1-5
issn 1090-3038
2577-2465
language eng
recordid cdi_ieee_primary_6092876
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cognitive radio
Correlation
Filtering
Filtering algorithms
Sensors
Stochastic processes
Traffic control
title Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autocorrelation-Based%20Traffic%20Pattern%20Classification%20for%20Cognitive%20Radios&rft.btitle=2011%20IEEE%20Vehicular%20Technology%20Conference%20(VTC%20Fall)&rft.au=Hoyhtya,%20M.&rft.date=2011-09&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1090-3038&rft.eissn=2577-2465&rft.isbn=9781424483280&rft.isbn_list=142448328X&rft_id=info:doi/10.1109/VETECF.2011.6092876&rft_dat=%3Cieee_6IE%3E6092876%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424483263&rft.eisbn_list=9781424483266&rft.eisbn_list=9781424483273&rft.eisbn_list=1424483255&rft.eisbn_list=9781424483259&rft.eisbn_list=1424483271&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6092876&rfr_iscdi=true