Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios
This paper proposes a autocorrelation-based method to classify traffic patterns of primary channels in cognitive radio systems to allow a more accurate prediction of the future idle times. The classification algorithm uses binary information collected by spectrum sensing. It searches periodicity fro...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Hoyhtya, M. Sarvanko, H. Matinmikko, M. Mammela, A. |
description | This paper proposes a autocorrelation-based method to classify traffic patterns of primary channels in cognitive radio systems to allow a more accurate prediction of the future idle times. The classification algorithm uses binary information collected by spectrum sensing. It searches periodicity from the sensed binary pattern using a discrete autocorrelation function. Errors that are caused by noise and possible false sensing reports are filtered away from the autocorrelation function. We tested the method with Pare to, Weibull, and exponentially distributed stochastic traffic, and with deterministic traffic. The proposed method finds the type of traffic with a high probability when the channels of interest include both stochastic and deterministic traffic. Stochastic traffic is always classified right and regarding the deterministic traffic the probability of correct classification is over 95% when the probability of missed detection or probability of false alarms is below 10%. |
doi_str_mv | 10.1109/VETECF.2011.6092876 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6092876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6092876</ieee_id><sourcerecordid>6092876</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c3a9702a43fc7de22e70b1c67741bc79ef25f1e76cbab316052eae26663e08ab3</originalsourceid><addsrcrecordid>eNo1kNtKxDAYhOMJrGufYG_6Aq05NX9zuZauLiwoUr1d0vSPRGorSRV8e4uuczMwM3wXQ8ia0YIxqm9emraptwWnjBWKal6BOiFXTHIpK8GVOCUJLwFyLlV5RlIN1X9X0XOSLAiaCyqqS5LG-EYXKaVBy4TsNp_zZKcQcDCzn8b81kTsszYY57zNHs08YxizejAx-iX5HWVuClk9vY5-9l-YPZneT_GaXDgzREyPviLP26at7_P9w92u3uxzz6CccyuMBsqNFM5Cj5wj0I5ZBSBZZ0Gj46VjCMp2phNM0ZKjQa6UEkirJVqR9R_XI-LhI_h3E74Px1fED0O9Ups</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hoyhtya, M. ; Sarvanko, H. ; Matinmikko, M. ; Mammela, A.</creator><creatorcontrib>Hoyhtya, M. ; Sarvanko, H. ; Matinmikko, M. ; Mammela, A.</creatorcontrib><description>This paper proposes a autocorrelation-based method to classify traffic patterns of primary channels in cognitive radio systems to allow a more accurate prediction of the future idle times. The classification algorithm uses binary information collected by spectrum sensing. It searches periodicity from the sensed binary pattern using a discrete autocorrelation function. Errors that are caused by noise and possible false sensing reports are filtered away from the autocorrelation function. We tested the method with Pare to, Weibull, and exponentially distributed stochastic traffic, and with deterministic traffic. The proposed method finds the type of traffic with a high probability when the channels of interest include both stochastic and deterministic traffic. Stochastic traffic is always classified right and regarding the deterministic traffic the probability of correct classification is over 95% when the probability of missed detection or probability of false alarms is below 10%.</description><identifier>ISSN: 1090-3038</identifier><identifier>ISBN: 9781424483280</identifier><identifier>ISBN: 142448328X</identifier><identifier>EISSN: 2577-2465</identifier><identifier>EISBN: 1424483263</identifier><identifier>EISBN: 9781424483266</identifier><identifier>EISBN: 9781424483273</identifier><identifier>EISBN: 1424483255</identifier><identifier>EISBN: 9781424483259</identifier><identifier>EISBN: 1424483271</identifier><identifier>DOI: 10.1109/VETECF.2011.6092876</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cognitive radio ; Correlation ; Filtering ; Filtering algorithms ; Sensors ; Stochastic processes ; Traffic control</subject><ispartof>2011 IEEE Vehicular Technology Conference (VTC Fall), 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6092876$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6092876$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoyhtya, M.</creatorcontrib><creatorcontrib>Sarvanko, H.</creatorcontrib><creatorcontrib>Matinmikko, M.</creatorcontrib><creatorcontrib>Mammela, A.</creatorcontrib><title>Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios</title><title>2011 IEEE Vehicular Technology Conference (VTC Fall)</title><addtitle>VETECF</addtitle><description>This paper proposes a autocorrelation-based method to classify traffic patterns of primary channels in cognitive radio systems to allow a more accurate prediction of the future idle times. The classification algorithm uses binary information collected by spectrum sensing. It searches periodicity from the sensed binary pattern using a discrete autocorrelation function. Errors that are caused by noise and possible false sensing reports are filtered away from the autocorrelation function. We tested the method with Pare to, Weibull, and exponentially distributed stochastic traffic, and with deterministic traffic. The proposed method finds the type of traffic with a high probability when the channels of interest include both stochastic and deterministic traffic. Stochastic traffic is always classified right and regarding the deterministic traffic the probability of correct classification is over 95% when the probability of missed detection or probability of false alarms is below 10%.</description><subject>Cognitive radio</subject><subject>Correlation</subject><subject>Filtering</subject><subject>Filtering algorithms</subject><subject>Sensors</subject><subject>Stochastic processes</subject><subject>Traffic control</subject><issn>1090-3038</issn><issn>2577-2465</issn><isbn>9781424483280</isbn><isbn>142448328X</isbn><isbn>1424483263</isbn><isbn>9781424483266</isbn><isbn>9781424483273</isbn><isbn>1424483255</isbn><isbn>9781424483259</isbn><isbn>1424483271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKxDAYhOMJrGufYG_6Aq05NX9zuZauLiwoUr1d0vSPRGorSRV8e4uuczMwM3wXQ8ia0YIxqm9emraptwWnjBWKal6BOiFXTHIpK8GVOCUJLwFyLlV5RlIN1X9X0XOSLAiaCyqqS5LG-EYXKaVBy4TsNp_zZKcQcDCzn8b81kTsszYY57zNHs08YxizejAx-iX5HWVuClk9vY5-9l-YPZneT_GaXDgzREyPviLP26at7_P9w92u3uxzz6CccyuMBsqNFM5Cj5wj0I5ZBSBZZ0Gj46VjCMp2phNM0ZKjQa6UEkirJVqR9R_XI-LhI_h3E74Px1fED0O9Ups</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Hoyhtya, M.</creator><creator>Sarvanko, H.</creator><creator>Matinmikko, M.</creator><creator>Mammela, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios</title><author>Hoyhtya, M. ; Sarvanko, H. ; Matinmikko, M. ; Mammela, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c3a9702a43fc7de22e70b1c67741bc79ef25f1e76cbab316052eae26663e08ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cognitive radio</topic><topic>Correlation</topic><topic>Filtering</topic><topic>Filtering algorithms</topic><topic>Sensors</topic><topic>Stochastic processes</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoyhtya, M.</creatorcontrib><creatorcontrib>Sarvanko, H.</creatorcontrib><creatorcontrib>Matinmikko, M.</creatorcontrib><creatorcontrib>Mammela, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoyhtya, M.</au><au>Sarvanko, H.</au><au>Matinmikko, M.</au><au>Mammela, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios</atitle><btitle>2011 IEEE Vehicular Technology Conference (VTC Fall)</btitle><stitle>VETECF</stitle><date>2011-09</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1090-3038</issn><eissn>2577-2465</eissn><isbn>9781424483280</isbn><isbn>142448328X</isbn><eisbn>1424483263</eisbn><eisbn>9781424483266</eisbn><eisbn>9781424483273</eisbn><eisbn>1424483255</eisbn><eisbn>9781424483259</eisbn><eisbn>1424483271</eisbn><abstract>This paper proposes a autocorrelation-based method to classify traffic patterns of primary channels in cognitive radio systems to allow a more accurate prediction of the future idle times. The classification algorithm uses binary information collected by spectrum sensing. It searches periodicity from the sensed binary pattern using a discrete autocorrelation function. Errors that are caused by noise and possible false sensing reports are filtered away from the autocorrelation function. We tested the method with Pare to, Weibull, and exponentially distributed stochastic traffic, and with deterministic traffic. The proposed method finds the type of traffic with a high probability when the channels of interest include both stochastic and deterministic traffic. Stochastic traffic is always classified right and regarding the deterministic traffic the probability of correct classification is over 95% when the probability of missed detection or probability of false alarms is below 10%.</abstract><pub>IEEE</pub><doi>10.1109/VETECF.2011.6092876</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1090-3038 |
ispartof | 2011 IEEE Vehicular Technology Conference (VTC Fall), 2011, p.1-5 |
issn | 1090-3038 2577-2465 |
language | eng |
recordid | cdi_ieee_primary_6092876 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cognitive radio Correlation Filtering Filtering algorithms Sensors Stochastic processes Traffic control |
title | Autocorrelation-Based Traffic Pattern Classification for Cognitive Radios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autocorrelation-Based%20Traffic%20Pattern%20Classification%20for%20Cognitive%20Radios&rft.btitle=2011%20IEEE%20Vehicular%20Technology%20Conference%20(VTC%20Fall)&rft.au=Hoyhtya,%20M.&rft.date=2011-09&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1090-3038&rft.eissn=2577-2465&rft.isbn=9781424483280&rft.isbn_list=142448328X&rft_id=info:doi/10.1109/VETECF.2011.6092876&rft_dat=%3Cieee_6IE%3E6092876%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424483263&rft.eisbn_list=9781424483266&rft.eisbn_list=9781424483273&rft.eisbn_list=1424483255&rft.eisbn_list=9781424483259&rft.eisbn_list=1424483271&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6092876&rfr_iscdi=true |