Speckle detection in ultrasonic images using unsupervised clustering techniques

In ultrasonic images, identification of speckled regions helps to estimate probe movement as well as improve performance of algorithms for adaptive speckle suppression and the elevational separation of B-scans by speckle decorrelation. By tracking FDS patch displacements over time we can calculate s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Azar, A. A., Rivaz, H., Boctor, E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8101
container_issue
container_start_page 8098
container_title
container_volume 2011
creator Azar, A. A.
Rivaz, H.
Boctor, E.
description In ultrasonic images, identification of speckled regions helps to estimate probe movement as well as improve performance of algorithms for adaptive speckle suppression and the elevational separation of B-scans by speckle decorrelation. By tracking FDS patch displacements over time we can calculate strain and detect tumor location. Previous studies for speckle detection were based on classification techniques which estimated parameters of the statistical distribution which were based on observation data and ultrasound echo envelope signal. However, in this study, we proposed a new combination of statistical features which were extracted from the ultrasound images and explored their properties for the speckle detection. These features were used as inputs to the unsupervised clustering algorithms for the speckle classification. We used five different types of unsupervised techniques and compared their performance by feeding different combinations of the statistical features. In order to quantitatively compare statistical features and classification methods, as ground truth, we used simulations of cyst and fetus ultrasound images which were generated using Field II ultrasound simulation program[1]. Initial results showed that by combining two statistical models (K and Rayleigh distributions) we can get best speck detection signatures to feed unsupervised classifiers and maximize speckle detection performance.
doi_str_mv 10.1109/IEMBS.2011.6091997
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6091997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6091997</ieee_id><sourcerecordid>22256221</sourcerecordid><originalsourceid>FETCH-LOGICAL-i300t-bbda0ba539017b23507032232a9486cbf65f4f365e41a496b2f3ddf2ca7a39053</originalsourceid><addsrcrecordid>eNo9kN1OwkAQhde_CGJfQBPTFyjuzP60e6kElQTDBZp4R7btFFdLqd3WxLe3BnBuJpnvnMmZYewK-BiAm9vZ9Pl-OUYOMNbcgDHxEbsAiVJKQNTHbAhKJZHUoE5YYOLkwABOe8aNjHQSvw1Y4P0H70trIwSeswEiKo0IQ7ZY1pR9lhTm1FLWum0Vuirsyraxflu5LHQbuyYfdt5V67CrfFdT8-085WFWdr6l5m_eW98r99WRv2RnhS09Bfs-Yq8P05fJUzRfPM4md_PICc7bKE1zy1OrhOEQpygUj7lAFGiNTHSWFloVshBakQQrjU6xEHleYGZj23uUGLGb3d66SzeUr-qmD9r8rA6X9YLrncAR0T_e_1H8ArGCYHc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Speckle detection in ultrasonic images using unsupervised clustering techniques</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azar, A. A. ; Rivaz, H. ; Boctor, E.</creator><creatorcontrib>Azar, A. A. ; Rivaz, H. ; Boctor, E.</creatorcontrib><description>In ultrasonic images, identification of speckled regions helps to estimate probe movement as well as improve performance of algorithms for adaptive speckle suppression and the elevational separation of B-scans by speckle decorrelation. By tracking FDS patch displacements over time we can calculate strain and detect tumor location. Previous studies for speckle detection were based on classification techniques which estimated parameters of the statistical distribution which were based on observation data and ultrasound echo envelope signal. However, in this study, we proposed a new combination of statistical features which were extracted from the ultrasound images and explored their properties for the speckle detection. These features were used as inputs to the unsupervised clustering algorithms for the speckle classification. We used five different types of unsupervised techniques and compared their performance by feeding different combinations of the statistical features. In order to quantitatively compare statistical features and classification methods, as ground truth, we used simulations of cyst and fetus ultrasound images which were generated using Field II ultrasound simulation program[1]. Initial results showed that by combining two statistical models (K and Rayleigh distributions) we can get best speck detection signatures to feed unsupervised classifiers and maximize speckle detection performance.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6091997</identifier><identifier>PMID: 22256221</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Algorithms ; Biomedical imaging ; Cluster Analysis ; Computer Simulation ; Feature extraction ; Humans ; Image segmentation ; pattern classification ; Phantoms, Imaging ; Radio Waves ; segmentation ; Speckle ; Speckle detection ; speckle tracking ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasonography, Prenatal ; Ultrasound ; unsupervised clustering</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.8098-8101</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6091997$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6091997$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22256221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Azar, A. A.</creatorcontrib><creatorcontrib>Rivaz, H.</creatorcontrib><creatorcontrib>Boctor, E.</creatorcontrib><title>Speckle detection in ultrasonic images using unsupervised clustering techniques</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In ultrasonic images, identification of speckled regions helps to estimate probe movement as well as improve performance of algorithms for adaptive speckle suppression and the elevational separation of B-scans by speckle decorrelation. By tracking FDS patch displacements over time we can calculate strain and detect tumor location. Previous studies for speckle detection were based on classification techniques which estimated parameters of the statistical distribution which were based on observation data and ultrasound echo envelope signal. However, in this study, we proposed a new combination of statistical features which were extracted from the ultrasound images and explored their properties for the speckle detection. These features were used as inputs to the unsupervised clustering algorithms for the speckle classification. We used five different types of unsupervised techniques and compared their performance by feeding different combinations of the statistical features. In order to quantitatively compare statistical features and classification methods, as ground truth, we used simulations of cyst and fetus ultrasound images which were generated using Field II ultrasound simulation program[1]. Initial results showed that by combining two statistical models (K and Rayleigh distributions) we can get best speck detection signatures to feed unsupervised classifiers and maximize speckle detection performance.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>pattern classification</subject><subject>Phantoms, Imaging</subject><subject>Radio Waves</subject><subject>segmentation</subject><subject>Speckle</subject><subject>Speckle detection</subject><subject>speckle tracking</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasonography, Prenatal</subject><subject>Ultrasound</subject><subject>unsupervised clustering</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kN1OwkAQhde_CGJfQBPTFyjuzP60e6kElQTDBZp4R7btFFdLqd3WxLe3BnBuJpnvnMmZYewK-BiAm9vZ9Pl-OUYOMNbcgDHxEbsAiVJKQNTHbAhKJZHUoE5YYOLkwABOe8aNjHQSvw1Y4P0H70trIwSeswEiKo0IQ7ZY1pR9lhTm1FLWum0Vuirsyraxflu5LHQbuyYfdt5V67CrfFdT8-085WFWdr6l5m_eW98r99WRv2RnhS09Bfs-Yq8P05fJUzRfPM4md_PICc7bKE1zy1OrhOEQpygUj7lAFGiNTHSWFloVshBakQQrjU6xEHleYGZj23uUGLGb3d66SzeUr-qmD9r8rA6X9YLrncAR0T_e_1H8ArGCYHc</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Azar, A. A.</creator><creator>Rivaz, H.</creator><creator>Boctor, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>Speckle detection in ultrasonic images using unsupervised clustering techniques</title><author>Azar, A. A. ; Rivaz, H. ; Boctor, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i300t-bbda0ba539017b23507032232a9486cbf65f4f365e41a496b2f3ddf2ca7a39053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>pattern classification</topic><topic>Phantoms, Imaging</topic><topic>Radio Waves</topic><topic>segmentation</topic><topic>Speckle</topic><topic>Speckle detection</topic><topic>speckle tracking</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasonography, Prenatal</topic><topic>Ultrasound</topic><topic>unsupervised clustering</topic><toplevel>online_resources</toplevel><creatorcontrib>Azar, A. A.</creatorcontrib><creatorcontrib>Rivaz, H.</creatorcontrib><creatorcontrib>Boctor, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azar, A. A.</au><au>Rivaz, H.</au><au>Boctor, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Speckle detection in ultrasonic images using unsupervised clustering techniques</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>8098</spage><epage>8101</epage><pages>8098-8101</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>In ultrasonic images, identification of speckled regions helps to estimate probe movement as well as improve performance of algorithms for adaptive speckle suppression and the elevational separation of B-scans by speckle decorrelation. By tracking FDS patch displacements over time we can calculate strain and detect tumor location. Previous studies for speckle detection were based on classification techniques which estimated parameters of the statistical distribution which were based on observation data and ultrasound echo envelope signal. However, in this study, we proposed a new combination of statistical features which were extracted from the ultrasound images and explored their properties for the speckle detection. These features were used as inputs to the unsupervised clustering algorithms for the speckle classification. We used five different types of unsupervised techniques and compared their performance by feeding different combinations of the statistical features. In order to quantitatively compare statistical features and classification methods, as ground truth, we used simulations of cyst and fetus ultrasound images which were generated using Field II ultrasound simulation program[1]. Initial results showed that by combining two statistical models (K and Rayleigh distributions) we can get best speck detection signatures to feed unsupervised classifiers and maximize speckle detection performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22256221</pmid><doi>10.1109/IEMBS.2011.6091997</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.8098-8101
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6091997
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustics
Algorithms
Biomedical imaging
Cluster Analysis
Computer Simulation
Feature extraction
Humans
Image segmentation
pattern classification
Phantoms, Imaging
Radio Waves
segmentation
Speckle
Speckle detection
speckle tracking
Ultrasonic imaging
Ultrasonography - methods
Ultrasonography, Prenatal
Ultrasound
unsupervised clustering
title Speckle detection in ultrasonic images using unsupervised clustering techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Speckle%20detection%20in%20ultrasonic%20images%20using%20unsupervised%20clustering%20techniques&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Azar,%20A.%20A.&rft.date=2011-01-01&rft.volume=2011&rft.spage=8098&rft.epage=8101&rft.pages=8098-8101&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6091997&rft_dat=%3Cpubmed_6IE%3E22256221%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22256221&rft_ieee_id=6091997&rfr_iscdi=true