Polynomial regularization for robust MRI-based estimation of blood flow velocities and pressure gradients
In cardiovascular diagnostics, phase-contrast MRI is a valuable technique for measuring blood flow velocities and computing blood pressure values. Unfortunately, both velocity and pressure data typically suffer from the strong image noise of velocity-encoded MRI. In the past, separate approaches of...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6832 |
---|---|
container_issue | |
container_start_page | 6829 |
container_title | |
container_volume | 2011 |
creator | Delles, M. Rengier, F. Ley, S. von Tengg-Kobligk, H. Kauczor, H. Dillmann, R. Unterhinninghofen, R. |
description | In cardiovascular diagnostics, phase-contrast MRI is a valuable technique for measuring blood flow velocities and computing blood pressure values. Unfortunately, both velocity and pressure data typically suffer from the strong image noise of velocity-encoded MRI. In the past, separate approaches of regularization with physical a-priori knowledge and data representation with continuous functions have been proposed to overcome these drawbacks. In this article, we investigate polynomial regularization as an exemplary specification of combining these two techniques. We perform time-resolved three-dimensional velocity measurements and pressure gradient computations on MRI acquisitions of steady flow in a physical phantom. Results based on the higher quality temporal mean data are used as a reference. Thereby, we investigate the performance of our approach of polynomial regularization, which reduces the root mean squared errors to the reference data by 45% for velocities and 60% for pressure gradients. |
doi_str_mv | 10.1109/IEMBS.2011.6091684 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6091684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6091684</ieee_id><sourcerecordid>22255907</sourcerecordid><originalsourceid>FETCH-LOGICAL-i300t-80f1a41899479fd8420170791de2b4177a7de688c39169e221201bae45b6fd7d3</originalsourceid><addsrcrecordid>eNo9kNtOAjEQhuspgsgLaGL6AoudbreHSyWoJBCNh8Q70qWzpGahpF00-PRuAjg3c_F9mcz_E3IFbADAzO14NL1_G3AGMJDMgNTiiFyA4EII4Fweky4Uhc6EhOKE9I3SBwZw2jJmRCa1-uyQfkpfrB0pTZ7zc9LhnBeFYapL_Euot6uw9LamEReb2kb_axsfVrQKkcZQblJDp6_jrLQJHcXU-OWOh4qWdQiOVnX4od9Yh7lvPCZqV46uI6a0iUgX0TqPqyZdkrPK1gn7-90jHw-j9-FTNnl-HA_vJpnPGWsyzSqwArQxQpnKadHmV0wZcMhLAUpZ5VBqPc_bRgxyDq1QWhRFKSunXN4jN7u76025RDdbx_bhuJ0dMrfC9U7wiPiP9w3nfwvaaSk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Polynomial regularization for robust MRI-based estimation of blood flow velocities and pressure gradients</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Delles, M. ; Rengier, F. ; Ley, S. ; von Tengg-Kobligk, H. ; Kauczor, H. ; Dillmann, R. ; Unterhinninghofen, R.</creator><creatorcontrib>Delles, M. ; Rengier, F. ; Ley, S. ; von Tengg-Kobligk, H. ; Kauczor, H. ; Dillmann, R. ; Unterhinninghofen, R.</creatorcontrib><description>In cardiovascular diagnostics, phase-contrast MRI is a valuable technique for measuring blood flow velocities and computing blood pressure values. Unfortunately, both velocity and pressure data typically suffer from the strong image noise of velocity-encoded MRI. In the past, separate approaches of regularization with physical a-priori knowledge and data representation with continuous functions have been proposed to overcome these drawbacks. In this article, we investigate polynomial regularization as an exemplary specification of combining these two techniques. We perform time-resolved three-dimensional velocity measurements and pressure gradient computations on MRI acquisitions of steady flow in a physical phantom. Results based on the higher quality temporal mean data are used as a reference. Thereby, we investigate the performance of our approach of polynomial regularization, which reduces the root mean squared errors to the reference data by 45% for velocities and 60% for pressure gradients.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6091684</identifier><identifier>PMID: 22255907</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical imaging ; Blood ; Blood Flow Velocity - physiology ; Blood Pressure ; Humans ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional - methods ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Models, Theoretical ; Noise ; Phantoms, Imaging ; Polynomials ; Reference Values ; Reproducibility of Results ; Signal Processing, Computer-Assisted ; Time Factors ; Velocity measurement</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6829-6832</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6091684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6091684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22255907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delles, M.</creatorcontrib><creatorcontrib>Rengier, F.</creatorcontrib><creatorcontrib>Ley, S.</creatorcontrib><creatorcontrib>von Tengg-Kobligk, H.</creatorcontrib><creatorcontrib>Kauczor, H.</creatorcontrib><creatorcontrib>Dillmann, R.</creatorcontrib><creatorcontrib>Unterhinninghofen, R.</creatorcontrib><title>Polynomial regularization for robust MRI-based estimation of blood flow velocities and pressure gradients</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>In cardiovascular diagnostics, phase-contrast MRI is a valuable technique for measuring blood flow velocities and computing blood pressure values. Unfortunately, both velocity and pressure data typically suffer from the strong image noise of velocity-encoded MRI. In the past, separate approaches of regularization with physical a-priori knowledge and data representation with continuous functions have been proposed to overcome these drawbacks. In this article, we investigate polynomial regularization as an exemplary specification of combining these two techniques. We perform time-resolved three-dimensional velocity measurements and pressure gradient computations on MRI acquisitions of steady flow in a physical phantom. Results based on the higher quality temporal mean data are used as a reference. Thereby, we investigate the performance of our approach of polynomial regularization, which reduces the root mean squared errors to the reference data by 45% for velocities and 60% for pressure gradients.</description><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>Blood</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood Pressure</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Noise</subject><subject>Phantoms, Imaging</subject><subject>Polynomials</subject><subject>Reference Values</subject><subject>Reproducibility of Results</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Time Factors</subject><subject>Velocity measurement</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kNtOAjEQhuspgsgLaGL6AoudbreHSyWoJBCNh8Q70qWzpGahpF00-PRuAjg3c_F9mcz_E3IFbADAzO14NL1_G3AGMJDMgNTiiFyA4EII4Fweky4Uhc6EhOKE9I3SBwZw2jJmRCa1-uyQfkpfrB0pTZ7zc9LhnBeFYapL_Euot6uw9LamEReb2kb_axsfVrQKkcZQblJDp6_jrLQJHcXU-OWOh4qWdQiOVnX4od9Yh7lvPCZqV46uI6a0iUgX0TqPqyZdkrPK1gn7-90jHw-j9-FTNnl-HA_vJpnPGWsyzSqwArQxQpnKadHmV0wZcMhLAUpZ5VBqPc_bRgxyDq1QWhRFKSunXN4jN7u76025RDdbx_bhuJ0dMrfC9U7wiPiP9w3nfwvaaSk</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Delles, M.</creator><creator>Rengier, F.</creator><creator>Ley, S.</creator><creator>von Tengg-Kobligk, H.</creator><creator>Kauczor, H.</creator><creator>Dillmann, R.</creator><creator>Unterhinninghofen, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>Polynomial regularization for robust MRI-based estimation of blood flow velocities and pressure gradients</title><author>Delles, M. ; Rengier, F. ; Ley, S. ; von Tengg-Kobligk, H. ; Kauczor, H. ; Dillmann, R. ; Unterhinninghofen, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i300t-80f1a41899479fd8420170791de2b4177a7de688c39169e221201bae45b6fd7d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>Blood</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood Pressure</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Noise</topic><topic>Phantoms, Imaging</topic><topic>Polynomials</topic><topic>Reference Values</topic><topic>Reproducibility of Results</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Time Factors</topic><topic>Velocity measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Delles, M.</creatorcontrib><creatorcontrib>Rengier, F.</creatorcontrib><creatorcontrib>Ley, S.</creatorcontrib><creatorcontrib>von Tengg-Kobligk, H.</creatorcontrib><creatorcontrib>Kauczor, H.</creatorcontrib><creatorcontrib>Dillmann, R.</creatorcontrib><creatorcontrib>Unterhinninghofen, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Delles, M.</au><au>Rengier, F.</au><au>Ley, S.</au><au>von Tengg-Kobligk, H.</au><au>Kauczor, H.</au><au>Dillmann, R.</au><au>Unterhinninghofen, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Polynomial regularization for robust MRI-based estimation of blood flow velocities and pressure gradients</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>6829</spage><epage>6832</epage><pages>6829-6832</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>In cardiovascular diagnostics, phase-contrast MRI is a valuable technique for measuring blood flow velocities and computing blood pressure values. Unfortunately, both velocity and pressure data typically suffer from the strong image noise of velocity-encoded MRI. In the past, separate approaches of regularization with physical a-priori knowledge and data representation with continuous functions have been proposed to overcome these drawbacks. In this article, we investigate polynomial regularization as an exemplary specification of combining these two techniques. We perform time-resolved three-dimensional velocity measurements and pressure gradient computations on MRI acquisitions of steady flow in a physical phantom. Results based on the higher quality temporal mean data are used as a reference. Thereby, we investigate the performance of our approach of polynomial regularization, which reduces the root mean squared errors to the reference data by 45% for velocities and 60% for pressure gradients.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22255907</pmid><doi>10.1109/IEMBS.2011.6091684</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6829-6832 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6091684 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Biomedical imaging Blood Blood Flow Velocity - physiology Blood Pressure Humans Image Processing, Computer-Assisted Imaging, Three-Dimensional - methods Magnetic resonance imaging Magnetic Resonance Imaging - methods Models, Statistical Models, Theoretical Noise Phantoms, Imaging Polynomials Reference Values Reproducibility of Results Signal Processing, Computer-Assisted Time Factors Velocity measurement |
title | Polynomial regularization for robust MRI-based estimation of blood flow velocities and pressure gradients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Polynomial%20regularization%20for%20robust%20MRI-based%20estimation%20of%20blood%20flow%20velocities%20and%20pressure%20gradients&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Delles,%20M.&rft.date=2011-01-01&rft.volume=2011&rft.spage=6829&rft.epage=6832&rft.pages=6829-6832&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6091684&rft_dat=%3Cpubmed_6IE%3E22255907%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22255907&rft_ieee_id=6091684&rfr_iscdi=true |