Application of non-linear control theory to a model of deep brain stimulation
Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass t...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6788 |
---|---|
container_issue | |
container_start_page | 6785 |
container_title | |
container_volume | 2011 |
creator | Davidson, C. M. Lowery, M. M. de Paor, A. M. |
description | Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass type model with second order dynamics. This model applies well established nonlinear control system theory to DBS. The analysis here determines the minimum criteria in terms of amplitude and pulse duration of stimulation, necessary to quench the unwanted oscillations in a closed loop system, and outlines the relationship between this model and the actual physiological system. |
doi_str_mv | 10.1109/IEMBS.2011.6091673 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6091673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6091673</ieee_id><sourcerecordid>22255896</sourcerecordid><originalsourceid>FETCH-LOGICAL-i300t-678512d720c22f1a68678fa253429148e402c8bfc1f44cfd99890404f986356d3</originalsourceid><addsrcrecordid>eNo9kM9OwzAMh8M_sTH2AiChvEBL7KRpctymAZM2cQAkblPaJiKobaq2O-ztKWzDF0v-Pv8km5A7YDEA04-r5Wb-FiMDiCXTIFN-Rm5AoBACEOU5GUOSqEhISC7IVKfqxAAuB8a0iKRKP0dk2nXfbCgpNed4TUaIOGxqOSabWdOUPje9DzUNjtahjkpfW9PSPNR9G0raf9nQ7mkfqKFVKGz56xXWNjRrja9p1_tqV_4l3JIrZ8rOTo99Qj6elu-Ll2j9-rxazNaR54z1kUxVAlikyHJEB0aqYeIMJlygBqGsYJirzOXghMhdobXSTDDhtJI8kQWfkIdDbrPLKltsm9ZXpt1vT3cNwv1B8Nbaf3z8Iv8BbF1dew</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of non-linear control theory to a model of deep brain stimulation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Davidson, C. M. ; Lowery, M. M. ; de Paor, A. M.</creator><creatorcontrib>Davidson, C. M. ; Lowery, M. M. ; de Paor, A. M.</creatorcontrib><description>Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass type model with second order dynamics. This model applies well established nonlinear control system theory to DBS. The analysis here determines the minimum criteria in terms of amplitude and pulse duration of stimulation, necessary to quench the unwanted oscillations in a closed loop system, and outlines the relationship between this model and the actual physiological system.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6091673</identifier><identifier>PMID: 22255896</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Basal ganglia ; Basal Ganglia - pathology ; Brain modeling ; Deep Brain Stimulation - methods ; Feedback ; Globus Pallidus - pathology ; Humans ; Linear Models ; Models, Statistical ; Neurons ; Neurons - pathology ; Nonlinear Dynamics ; Oscillators ; Oscillometry - methods ; Parkinson Disease - physiopathology ; Parkinson Disease - therapy ; Parkinson's disease ; Pathology ; Reproducibility of Results ; Satellite broadcasting</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6785-6788</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6091673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6091673$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22255896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davidson, C. M.</creatorcontrib><creatorcontrib>Lowery, M. M.</creatorcontrib><creatorcontrib>de Paor, A. M.</creatorcontrib><title>Application of non-linear control theory to a model of deep brain stimulation</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass type model with second order dynamics. This model applies well established nonlinear control system theory to DBS. The analysis here determines the minimum criteria in terms of amplitude and pulse duration of stimulation, necessary to quench the unwanted oscillations in a closed loop system, and outlines the relationship between this model and the actual physiological system.</description><subject>Algorithms</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - pathology</subject><subject>Brain modeling</subject><subject>Deep Brain Stimulation - methods</subject><subject>Feedback</subject><subject>Globus Pallidus - pathology</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Models, Statistical</subject><subject>Neurons</subject><subject>Neurons - pathology</subject><subject>Nonlinear Dynamics</subject><subject>Oscillators</subject><subject>Oscillometry - methods</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson Disease - therapy</subject><subject>Parkinson's disease</subject><subject>Pathology</subject><subject>Reproducibility of Results</subject><subject>Satellite broadcasting</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kM9OwzAMh8M_sTH2AiChvEBL7KRpctymAZM2cQAkblPaJiKobaq2O-ztKWzDF0v-Pv8km5A7YDEA04-r5Wb-FiMDiCXTIFN-Rm5AoBACEOU5GUOSqEhISC7IVKfqxAAuB8a0iKRKP0dk2nXfbCgpNed4TUaIOGxqOSabWdOUPje9DzUNjtahjkpfW9PSPNR9G0raf9nQ7mkfqKFVKGz56xXWNjRrja9p1_tqV_4l3JIrZ8rOTo99Qj6elu-Ll2j9-rxazNaR54z1kUxVAlikyHJEB0aqYeIMJlygBqGsYJirzOXghMhdobXSTDDhtJI8kQWfkIdDbrPLKltsm9ZXpt1vT3cNwv1B8Nbaf3z8Iv8BbF1dew</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Davidson, C. M.</creator><creator>Lowery, M. M.</creator><creator>de Paor, A. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>Application of non-linear control theory to a model of deep brain stimulation</title><author>Davidson, C. M. ; Lowery, M. M. ; de Paor, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i300t-678512d720c22f1a68678fa253429148e402c8bfc1f44cfd99890404f986356d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - pathology</topic><topic>Brain modeling</topic><topic>Deep Brain Stimulation - methods</topic><topic>Feedback</topic><topic>Globus Pallidus - pathology</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Models, Statistical</topic><topic>Neurons</topic><topic>Neurons - pathology</topic><topic>Nonlinear Dynamics</topic><topic>Oscillators</topic><topic>Oscillometry - methods</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson Disease - therapy</topic><topic>Parkinson's disease</topic><topic>Pathology</topic><topic>Reproducibility of Results</topic><topic>Satellite broadcasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Davidson, C. M.</creatorcontrib><creatorcontrib>Lowery, M. M.</creatorcontrib><creatorcontrib>de Paor, A. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Davidson, C. M.</au><au>Lowery, M. M.</au><au>de Paor, A. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of non-linear control theory to a model of deep brain stimulation</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>6785</spage><epage>6788</epage><pages>6785-6788</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass type model with second order dynamics. This model applies well established nonlinear control system theory to DBS. The analysis here determines the minimum criteria in terms of amplitude and pulse duration of stimulation, necessary to quench the unwanted oscillations in a closed loop system, and outlines the relationship between this model and the actual physiological system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22255896</pmid><doi>10.1109/IEMBS.2011.6091673</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6785-6788 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6091673 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithms Basal ganglia Basal Ganglia - pathology Brain modeling Deep Brain Stimulation - methods Feedback Globus Pallidus - pathology Humans Linear Models Models, Statistical Neurons Neurons - pathology Nonlinear Dynamics Oscillators Oscillometry - methods Parkinson Disease - physiopathology Parkinson Disease - therapy Parkinson's disease Pathology Reproducibility of Results Satellite broadcasting |
title | Application of non-linear control theory to a model of deep brain stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20non-linear%20control%20theory%20to%20a%20model%20of%20deep%20brain%20stimulation&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Davidson,%20C.%20M.&rft.date=2011-01-01&rft.volume=2011&rft.spage=6785&rft.epage=6788&rft.pages=6785-6788&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6091673&rft_dat=%3Cpubmed_6IE%3E22255896%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22255896&rft_ieee_id=6091673&rfr_iscdi=true |