Application of non-linear control theory to a model of deep brain stimulation

Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Davidson, C. M., Lowery, M. M., de Paor, A. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6788
container_issue
container_start_page 6785
container_title
container_volume 2011
creator Davidson, C. M.
Lowery, M. M.
de Paor, A. M.
description Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass type model with second order dynamics. This model applies well established nonlinear control system theory to DBS. The analysis here determines the minimum criteria in terms of amplitude and pulse duration of stimulation, necessary to quench the unwanted oscillations in a closed loop system, and outlines the relationship between this model and the actual physiological system.
doi_str_mv 10.1109/IEMBS.2011.6091673
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6091673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6091673</ieee_id><sourcerecordid>22255896</sourcerecordid><originalsourceid>FETCH-LOGICAL-i300t-678512d720c22f1a68678fa253429148e402c8bfc1f44cfd99890404f986356d3</originalsourceid><addsrcrecordid>eNo9kM9OwzAMh8M_sTH2AiChvEBL7KRpctymAZM2cQAkblPaJiKobaq2O-ztKWzDF0v-Pv8km5A7YDEA04-r5Wb-FiMDiCXTIFN-Rm5AoBACEOU5GUOSqEhISC7IVKfqxAAuB8a0iKRKP0dk2nXfbCgpNed4TUaIOGxqOSabWdOUPje9DzUNjtahjkpfW9PSPNR9G0raf9nQ7mkfqKFVKGz56xXWNjRrja9p1_tqV_4l3JIrZ8rOTo99Qj6elu-Ll2j9-rxazNaR54z1kUxVAlikyHJEB0aqYeIMJlygBqGsYJirzOXghMhdobXSTDDhtJI8kQWfkIdDbrPLKltsm9ZXpt1vT3cNwv1B8Nbaf3z8Iv8BbF1dew</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of non-linear control theory to a model of deep brain stimulation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Davidson, C. M. ; Lowery, M. M. ; de Paor, A. M.</creator><creatorcontrib>Davidson, C. M. ; Lowery, M. M. ; de Paor, A. M.</creatorcontrib><description>Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass type model with second order dynamics. This model applies well established nonlinear control system theory to DBS. The analysis here determines the minimum criteria in terms of amplitude and pulse duration of stimulation, necessary to quench the unwanted oscillations in a closed loop system, and outlines the relationship between this model and the actual physiological system.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6091673</identifier><identifier>PMID: 22255896</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Basal ganglia ; Basal Ganglia - pathology ; Brain modeling ; Deep Brain Stimulation - methods ; Feedback ; Globus Pallidus - pathology ; Humans ; Linear Models ; Models, Statistical ; Neurons ; Neurons - pathology ; Nonlinear Dynamics ; Oscillators ; Oscillometry - methods ; Parkinson Disease - physiopathology ; Parkinson Disease - therapy ; Parkinson's disease ; Pathology ; Reproducibility of Results ; Satellite broadcasting</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6785-6788</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6091673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6091673$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22255896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davidson, C. M.</creatorcontrib><creatorcontrib>Lowery, M. M.</creatorcontrib><creatorcontrib>de Paor, A. M.</creatorcontrib><title>Application of non-linear control theory to a model of deep brain stimulation</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass type model with second order dynamics. This model applies well established nonlinear control system theory to DBS. The analysis here determines the minimum criteria in terms of amplitude and pulse duration of stimulation, necessary to quench the unwanted oscillations in a closed loop system, and outlines the relationship between this model and the actual physiological system.</description><subject>Algorithms</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - pathology</subject><subject>Brain modeling</subject><subject>Deep Brain Stimulation - methods</subject><subject>Feedback</subject><subject>Globus Pallidus - pathology</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Models, Statistical</subject><subject>Neurons</subject><subject>Neurons - pathology</subject><subject>Nonlinear Dynamics</subject><subject>Oscillators</subject><subject>Oscillometry - methods</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson Disease - therapy</subject><subject>Parkinson's disease</subject><subject>Pathology</subject><subject>Reproducibility of Results</subject><subject>Satellite broadcasting</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kM9OwzAMh8M_sTH2AiChvEBL7KRpctymAZM2cQAkblPaJiKobaq2O-ztKWzDF0v-Pv8km5A7YDEA04-r5Wb-FiMDiCXTIFN-Rm5AoBACEOU5GUOSqEhISC7IVKfqxAAuB8a0iKRKP0dk2nXfbCgpNed4TUaIOGxqOSabWdOUPje9DzUNjtahjkpfW9PSPNR9G0raf9nQ7mkfqKFVKGz56xXWNjRrja9p1_tqV_4l3JIrZ8rOTo99Qj6elu-Ll2j9-rxazNaR54z1kUxVAlikyHJEB0aqYeIMJlygBqGsYJirzOXghMhdobXSTDDhtJI8kQWfkIdDbrPLKltsm9ZXpt1vT3cNwv1B8Nbaf3z8Iv8BbF1dew</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Davidson, C. M.</creator><creator>Lowery, M. M.</creator><creator>de Paor, A. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>Application of non-linear control theory to a model of deep brain stimulation</title><author>Davidson, C. M. ; Lowery, M. M. ; de Paor, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i300t-678512d720c22f1a68678fa253429148e402c8bfc1f44cfd99890404f986356d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - pathology</topic><topic>Brain modeling</topic><topic>Deep Brain Stimulation - methods</topic><topic>Feedback</topic><topic>Globus Pallidus - pathology</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Models, Statistical</topic><topic>Neurons</topic><topic>Neurons - pathology</topic><topic>Nonlinear Dynamics</topic><topic>Oscillators</topic><topic>Oscillometry - methods</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson Disease - therapy</topic><topic>Parkinson's disease</topic><topic>Pathology</topic><topic>Reproducibility of Results</topic><topic>Satellite broadcasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Davidson, C. M.</creatorcontrib><creatorcontrib>Lowery, M. M.</creatorcontrib><creatorcontrib>de Paor, A. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Davidson, C. M.</au><au>Lowery, M. M.</au><au>de Paor, A. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of non-linear control theory to a model of deep brain stimulation</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>6785</spage><epage>6788</epage><pages>6785-6788</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass type model with second order dynamics. This model applies well established nonlinear control system theory to DBS. The analysis here determines the minimum criteria in terms of amplitude and pulse duration of stimulation, necessary to quench the unwanted oscillations in a closed loop system, and outlines the relationship between this model and the actual physiological system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22255896</pmid><doi>10.1109/IEMBS.2011.6091673</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.6785-6788
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6091673
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithms
Basal ganglia
Basal Ganglia - pathology
Brain modeling
Deep Brain Stimulation - methods
Feedback
Globus Pallidus - pathology
Humans
Linear Models
Models, Statistical
Neurons
Neurons - pathology
Nonlinear Dynamics
Oscillators
Oscillometry - methods
Parkinson Disease - physiopathology
Parkinson Disease - therapy
Parkinson's disease
Pathology
Reproducibility of Results
Satellite broadcasting
title Application of non-linear control theory to a model of deep brain stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20non-linear%20control%20theory%20to%20a%20model%20of%20deep%20brain%20stimulation&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Davidson,%20C.%20M.&rft.date=2011-01-01&rft.volume=2011&rft.spage=6785&rft.epage=6788&rft.pages=6785-6788&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6091673&rft_dat=%3Cpubmed_6IE%3E22255896%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22255896&rft_ieee_id=6091673&rfr_iscdi=true