A methodology for validating artifact removal techniques for fNIRS

fNIRS recordings are increasingly utilized to monitor brain activity in both clinical and connected health settings. These optical recordings provide a convenient measurement of cerebral hemodynamic changes which can be linked to motor and cognitive performance. Such measurements are of clinical uti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011-01, Vol.2011, p.4943-4946
Hauptverfasser: Sweeney, K. T., Ayaz, H., Ward, T. E., Izzetoglu, M., McLoone, S. F., Onaral, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4946
container_issue
container_start_page 4943
container_title 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume 2011
creator Sweeney, K. T.
Ayaz, H.
Ward, T. E.
Izzetoglu, M.
McLoone, S. F.
Onaral, B.
description fNIRS recordings are increasingly utilized to monitor brain activity in both clinical and connected health settings. These optical recordings provide a convenient measurement of cerebral hemodynamic changes which can be linked to motor and cognitive performance. Such measurements are of clinical utility in a broad range of conditions ranging from dementia to movement rehabilitation therapy. For such applications fNIRS is increasingly deployed outside the clinic for patient monitoring in the home. However, such a measurement environment is poorly controlled and motion, in particular, is a major source of artifacts in the signal, leading to poor signal quality for subsequent clinical interpretation. Artifact removal techniques are increasingly being employed with an aim of reducing the effect of the noise in the desired signal. Currently no methodology is available to accurately determine the efficacy of a given artifact removal technique due to the lack of a true reference for the uncontaminated signal. In this paper we propose a novel methodology for fNIRS data collection allowing for effective validation of artifact removal techniques. This methodology describes the use of two fNIRS channels in close proximity allowing them to sample the same measurement location; allowing for the introducing of motion artifact to only one channel while having the other free of contamination. Through use of this methodology, for each motion artifact epoch, a true reference for the uncontaminated signal becomes available for use in the development and performance evaluation of signal processing strategies. The advantage of the described methodology is demonstrated using a simple artifact removal technique with an accelerometer based reference.
doi_str_mv 10.1109/IEMBS.2011.6091225
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6091225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6091225</ieee_id><sourcerecordid>22255447</sourcerecordid><originalsourceid>FETCH-LOGICAL-i344t-48d8a4de6795c3b301812f8e60706afbd6c6a2e1580f60ed521ddaa46fcc77d13</originalsourceid><addsrcrecordid>eNo9kNtOwkAQhtdTBJEX0MT0BYo7e5jdXgJBJUFNRBPvyLa7C2taim0x4e1tBJybycz35U9mCLkBOgCgyf108jyaDxgFGCBNgDF5Qq5AMCFEO-Ap6YKUOhYI8oz0E6WPDOC8ZTQRMWr12SH9uv6ibSEmnLNL0mFtlhRCdcloGBWuWZW2zMvlLvJlFf2YPFjThPUyMlUTvMmaqHJF2e6jxmWrdfjeuvpP9S_Tt_k1ufAmr13_0Hvk42HyPn6KZ6-P0_FwFgcuRBMLbbUR1qFKZMZTTkED89ohVRSNTy1maJgDqalH6qxkYK0xAn2WKWWB98jdPnezTQtnF5sqFKbaLY7HtMLtXgjOuX98eB3_BVK8WuE</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A methodology for validating artifact removal techniques for fNIRS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sweeney, K. T. ; Ayaz, H. ; Ward, T. E. ; Izzetoglu, M. ; McLoone, S. F. ; Onaral, B.</creator><creatorcontrib>Sweeney, K. T. ; Ayaz, H. ; Ward, T. E. ; Izzetoglu, M. ; McLoone, S. F. ; Onaral, B.</creatorcontrib><description>fNIRS recordings are increasingly utilized to monitor brain activity in both clinical and connected health settings. These optical recordings provide a convenient measurement of cerebral hemodynamic changes which can be linked to motor and cognitive performance. Such measurements are of clinical utility in a broad range of conditions ranging from dementia to movement rehabilitation therapy. For such applications fNIRS is increasingly deployed outside the clinic for patient monitoring in the home. However, such a measurement environment is poorly controlled and motion, in particular, is a major source of artifacts in the signal, leading to poor signal quality for subsequent clinical interpretation. Artifact removal techniques are increasingly being employed with an aim of reducing the effect of the noise in the desired signal. Currently no methodology is available to accurately determine the efficacy of a given artifact removal technique due to the lack of a true reference for the uncontaminated signal. In this paper we propose a novel methodology for fNIRS data collection allowing for effective validation of artifact removal techniques. This methodology describes the use of two fNIRS channels in close proximity allowing them to sample the same measurement location; allowing for the introducing of motion artifact to only one channel while having the other free of contamination. Through use of this methodology, for each motion artifact epoch, a true reference for the uncontaminated signal becomes available for use in the development and performance evaluation of signal processing strategies. The advantage of the described methodology is demonstrated using a simple artifact removal technique with an accelerometer based reference.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6091225</identifier><identifier>PMID: 22255447</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accelerometers ; Algorithms ; Biomedical measurements ; Brain - physiology ; Detectors ; Diagnosis, Computer-Assisted - methods ; Functional Neuroimaging - methods ; Humans ; Movement ; Noise measurement ; Pollution measurement ; Reproducibility of Results ; Sensitivity and Specificity ; Signal to noise ratio ; Spectroscopy, Near-Infrared - methods</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011-01, Vol.2011, p.4943-4946</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6091225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6091225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22255447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sweeney, K. T.</creatorcontrib><creatorcontrib>Ayaz, H.</creatorcontrib><creatorcontrib>Ward, T. E.</creatorcontrib><creatorcontrib>Izzetoglu, M.</creatorcontrib><creatorcontrib>McLoone, S. F.</creatorcontrib><creatorcontrib>Onaral, B.</creatorcontrib><title>A methodology for validating artifact removal techniques for fNIRS</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>fNIRS recordings are increasingly utilized to monitor brain activity in both clinical and connected health settings. These optical recordings provide a convenient measurement of cerebral hemodynamic changes which can be linked to motor and cognitive performance. Such measurements are of clinical utility in a broad range of conditions ranging from dementia to movement rehabilitation therapy. For such applications fNIRS is increasingly deployed outside the clinic for patient monitoring in the home. However, such a measurement environment is poorly controlled and motion, in particular, is a major source of artifacts in the signal, leading to poor signal quality for subsequent clinical interpretation. Artifact removal techniques are increasingly being employed with an aim of reducing the effect of the noise in the desired signal. Currently no methodology is available to accurately determine the efficacy of a given artifact removal technique due to the lack of a true reference for the uncontaminated signal. In this paper we propose a novel methodology for fNIRS data collection allowing for effective validation of artifact removal techniques. This methodology describes the use of two fNIRS channels in close proximity allowing them to sample the same measurement location; allowing for the introducing of motion artifact to only one channel while having the other free of contamination. Through use of this methodology, for each motion artifact epoch, a true reference for the uncontaminated signal becomes available for use in the development and performance evaluation of signal processing strategies. The advantage of the described methodology is demonstrated using a simple artifact removal technique with an accelerometer based reference.</description><subject>Accelerometers</subject><subject>Algorithms</subject><subject>Biomedical measurements</subject><subject>Brain - physiology</subject><subject>Detectors</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Functional Neuroimaging - methods</subject><subject>Humans</subject><subject>Movement</subject><subject>Noise measurement</subject><subject>Pollution measurement</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal to noise ratio</subject><subject>Spectroscopy, Near-Infrared - methods</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kNtOwkAQhtdTBJEX0MT0BYo7e5jdXgJBJUFNRBPvyLa7C2taim0x4e1tBJybycz35U9mCLkBOgCgyf108jyaDxgFGCBNgDF5Qq5AMCFEO-Ap6YKUOhYI8oz0E6WPDOC8ZTQRMWr12SH9uv6ibSEmnLNL0mFtlhRCdcloGBWuWZW2zMvlLvJlFf2YPFjThPUyMlUTvMmaqHJF2e6jxmWrdfjeuvpP9S_Tt_k1ufAmr13_0Hvk42HyPn6KZ6-P0_FwFgcuRBMLbbUR1qFKZMZTTkED89ohVRSNTy1maJgDqalH6qxkYK0xAn2WKWWB98jdPnezTQtnF5sqFKbaLY7HtMLtXgjOuX98eB3_BVK8WuE</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Sweeney, K. T.</creator><creator>Ayaz, H.</creator><creator>Ward, T. E.</creator><creator>Izzetoglu, M.</creator><creator>McLoone, S. F.</creator><creator>Onaral, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>A methodology for validating artifact removal techniques for fNIRS</title><author>Sweeney, K. T. ; Ayaz, H. ; Ward, T. E. ; Izzetoglu, M. ; McLoone, S. F. ; Onaral, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i344t-48d8a4de6795c3b301812f8e60706afbd6c6a2e1580f60ed521ddaa46fcc77d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accelerometers</topic><topic>Algorithms</topic><topic>Biomedical measurements</topic><topic>Brain - physiology</topic><topic>Detectors</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Functional Neuroimaging - methods</topic><topic>Humans</topic><topic>Movement</topic><topic>Noise measurement</topic><topic>Pollution measurement</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal to noise ratio</topic><topic>Spectroscopy, Near-Infrared - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Sweeney, K. T.</creatorcontrib><creatorcontrib>Ayaz, H.</creatorcontrib><creatorcontrib>Ward, T. E.</creatorcontrib><creatorcontrib>Izzetoglu, M.</creatorcontrib><creatorcontrib>McLoone, S. F.</creatorcontrib><creatorcontrib>Onaral, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sweeney, K. T.</au><au>Ayaz, H.</au><au>Ward, T. E.</au><au>Izzetoglu, M.</au><au>McLoone, S. F.</au><au>Onaral, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology for validating artifact removal techniques for fNIRS</atitle><jtitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>4943</spage><epage>4946</epage><pages>4943-4946</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>fNIRS recordings are increasingly utilized to monitor brain activity in both clinical and connected health settings. These optical recordings provide a convenient measurement of cerebral hemodynamic changes which can be linked to motor and cognitive performance. Such measurements are of clinical utility in a broad range of conditions ranging from dementia to movement rehabilitation therapy. For such applications fNIRS is increasingly deployed outside the clinic for patient monitoring in the home. However, such a measurement environment is poorly controlled and motion, in particular, is a major source of artifacts in the signal, leading to poor signal quality for subsequent clinical interpretation. Artifact removal techniques are increasingly being employed with an aim of reducing the effect of the noise in the desired signal. Currently no methodology is available to accurately determine the efficacy of a given artifact removal technique due to the lack of a true reference for the uncontaminated signal. In this paper we propose a novel methodology for fNIRS data collection allowing for effective validation of artifact removal techniques. This methodology describes the use of two fNIRS channels in close proximity allowing them to sample the same measurement location; allowing for the introducing of motion artifact to only one channel while having the other free of contamination. Through use of this methodology, for each motion artifact epoch, a true reference for the uncontaminated signal becomes available for use in the development and performance evaluation of signal processing strategies. The advantage of the described methodology is demonstrated using a simple artifact removal technique with an accelerometer based reference.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22255447</pmid><doi>10.1109/IEMBS.2011.6091225</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011-01, Vol.2011, p.4943-4946
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6091225
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accelerometers
Algorithms
Biomedical measurements
Brain - physiology
Detectors
Diagnosis, Computer-Assisted - methods
Functional Neuroimaging - methods
Humans
Movement
Noise measurement
Pollution measurement
Reproducibility of Results
Sensitivity and Specificity
Signal to noise ratio
Spectroscopy, Near-Infrared - methods
title A methodology for validating artifact removal techniques for fNIRS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20for%20validating%20artifact%20removal%20techniques%20for%20fNIRS&rft.jtitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Sweeney,%20K.%20T.&rft.date=2011-01-01&rft.volume=2011&rft.spage=4943&rft.epage=4946&rft.pages=4943-4946&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6091225&rft_dat=%3Cpubmed_6IE%3E22255447%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22255447&rft_ieee_id=6091225&rfr_iscdi=true