Automatic retinal vessel profiling using multi-step regression method
Caliber of the retinal blood vessel is widely used for risk assessment of cardiovascular diseases. Accurate and automatic caliber measurement requires a precise model to be made for the vessel profile. In this paper, we present a new approach for retinal vessel profiling in which the background nois...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2609 |
---|---|
container_issue | |
container_start_page | 2606 |
container_title | |
container_volume | 2011 |
creator | Aliahmad, B. Kumar, D. K. Janghorban, S. Azemin, M. Z. C. Hao Hao Kawasaki, R. |
description | Caliber of the retinal blood vessel is widely used for risk assessment of cardiovascular diseases. Accurate and automatic caliber measurement requires a precise model to be made for the vessel profile. In this paper, we present a new approach for retinal vessel profiling in which the background noise, uneven illuminations and specular reflections have all been considered. In this method, regression analysis is performed with a series of second-order Gaussians to filter and up-sample the original vessel profile. This is then segmented to identify and represent the vessel edges by two Generalized Gaussian functions. The technique has been applied to retinal images and the results have been verified and compared with the state of the art automatic techniques. |
doi_str_mv | 10.1109/IEMBS.2011.6090719 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6090719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6090719</ieee_id><sourcerecordid>22254875</sourcerecordid><originalsourceid>FETCH-LOGICAL-i300t-c1629aacd1353ff7c49bc67174c8730bcd118125d84236a1a763ba12f03e20ae3</originalsourceid><addsrcrecordid>eNo9kNtKw0AQhtcTtta-gILkBVJ3Zs-XtVQtVLxQwbuySTZ1JWlCdiP49kZsnYuZi-_jh38IuQI6A6DmdrV8unuZIQWYSWqoAnNELoAj5xwQ5TEZgxA65RLECZkapQ8M4HRg1PBUavU-ItMQPukwUhrG8JyMEFFwrcSYLOd9bGobfZ50LvqdrZIvF4KrkrZrSl_53Tbpw--u-yr6NETXDua2GyTf7JLaxY-muCRnpa2Cm-7vhLzdL18Xj-n6-WG1mK9TzyiNaQ4SjbV5AUywslQ5N1kuFSiea8VoNgDQgKLQHJm0YJVkmQUsKXNIrWMTcvOX2_ZZ7YpN2_nadt-bQ59BuP4TvHPuH--_x34AKOFcWQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic retinal vessel profiling using multi-step regression method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Aliahmad, B. ; Kumar, D. K. ; Janghorban, S. ; Azemin, M. Z. C. ; Hao Hao ; Kawasaki, R.</creator><creatorcontrib>Aliahmad, B. ; Kumar, D. K. ; Janghorban, S. ; Azemin, M. Z. C. ; Hao Hao ; Kawasaki, R.</creatorcontrib><description>Caliber of the retinal blood vessel is widely used for risk assessment of cardiovascular diseases. Accurate and automatic caliber measurement requires a precise model to be made for the vessel profile. In this paper, we present a new approach for retinal vessel profiling in which the background noise, uneven illuminations and specular reflections have all been considered. In this method, regression analysis is performed with a series of second-order Gaussians to filter and up-sample the original vessel profile. This is then segmented to identify and represent the vessel edges by two Generalized Gaussian functions. The technique has been applied to retinal images and the results have been verified and compared with the state of the art automatic techniques.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6090719</identifier><identifier>PMID: 22254875</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Australia ; Automation ; Biomedical measurements ; Educational institutions ; Estimation ; Fitting ; Gaussian representation ; Humans ; Noise measurement ; Regression Analysis ; Retinal image ; Retinal vessels ; Retinal Vessels - physiology ; Vessel profile</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.2606-2609</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6090719$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6090719$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22254875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aliahmad, B.</creatorcontrib><creatorcontrib>Kumar, D. K.</creatorcontrib><creatorcontrib>Janghorban, S.</creatorcontrib><creatorcontrib>Azemin, M. Z. C.</creatorcontrib><creatorcontrib>Hao Hao</creatorcontrib><creatorcontrib>Kawasaki, R.</creatorcontrib><title>Automatic retinal vessel profiling using multi-step regression method</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Caliber of the retinal blood vessel is widely used for risk assessment of cardiovascular diseases. Accurate and automatic caliber measurement requires a precise model to be made for the vessel profile. In this paper, we present a new approach for retinal vessel profiling in which the background noise, uneven illuminations and specular reflections have all been considered. In this method, regression analysis is performed with a series of second-order Gaussians to filter and up-sample the original vessel profile. This is then segmented to identify and represent the vessel edges by two Generalized Gaussian functions. The technique has been applied to retinal images and the results have been verified and compared with the state of the art automatic techniques.</description><subject>Australia</subject><subject>Automation</subject><subject>Biomedical measurements</subject><subject>Educational institutions</subject><subject>Estimation</subject><subject>Fitting</subject><subject>Gaussian representation</subject><subject>Humans</subject><subject>Noise measurement</subject><subject>Regression Analysis</subject><subject>Retinal image</subject><subject>Retinal vessels</subject><subject>Retinal Vessels - physiology</subject><subject>Vessel profile</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kNtKw0AQhtcTtta-gILkBVJ3Zs-XtVQtVLxQwbuySTZ1JWlCdiP49kZsnYuZi-_jh38IuQI6A6DmdrV8unuZIQWYSWqoAnNELoAj5xwQ5TEZgxA65RLECZkapQ8M4HRg1PBUavU-ItMQPukwUhrG8JyMEFFwrcSYLOd9bGobfZ50LvqdrZIvF4KrkrZrSl_53Tbpw--u-yr6NETXDua2GyTf7JLaxY-muCRnpa2Cm-7vhLzdL18Xj-n6-WG1mK9TzyiNaQ4SjbV5AUywslQ5N1kuFSiea8VoNgDQgKLQHJm0YJVkmQUsKXNIrWMTcvOX2_ZZ7YpN2_nadt-bQ59BuP4TvHPuH--_x34AKOFcWQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Aliahmad, B.</creator><creator>Kumar, D. K.</creator><creator>Janghorban, S.</creator><creator>Azemin, M. Z. C.</creator><creator>Hao Hao</creator><creator>Kawasaki, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>Automatic retinal vessel profiling using multi-step regression method</title><author>Aliahmad, B. ; Kumar, D. K. ; Janghorban, S. ; Azemin, M. Z. C. ; Hao Hao ; Kawasaki, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i300t-c1629aacd1353ff7c49bc67174c8730bcd118125d84236a1a763ba12f03e20ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Australia</topic><topic>Automation</topic><topic>Biomedical measurements</topic><topic>Educational institutions</topic><topic>Estimation</topic><topic>Fitting</topic><topic>Gaussian representation</topic><topic>Humans</topic><topic>Noise measurement</topic><topic>Regression Analysis</topic><topic>Retinal image</topic><topic>Retinal vessels</topic><topic>Retinal Vessels - physiology</topic><topic>Vessel profile</topic><toplevel>online_resources</toplevel><creatorcontrib>Aliahmad, B.</creatorcontrib><creatorcontrib>Kumar, D. K.</creatorcontrib><creatorcontrib>Janghorban, S.</creatorcontrib><creatorcontrib>Azemin, M. Z. C.</creatorcontrib><creatorcontrib>Hao Hao</creatorcontrib><creatorcontrib>Kawasaki, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aliahmad, B.</au><au>Kumar, D. K.</au><au>Janghorban, S.</au><au>Azemin, M. Z. C.</au><au>Hao Hao</au><au>Kawasaki, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic retinal vessel profiling using multi-step regression method</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>2606</spage><epage>2609</epage><pages>2606-2609</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>Caliber of the retinal blood vessel is widely used for risk assessment of cardiovascular diseases. Accurate and automatic caliber measurement requires a precise model to be made for the vessel profile. In this paper, we present a new approach for retinal vessel profiling in which the background noise, uneven illuminations and specular reflections have all been considered. In this method, regression analysis is performed with a series of second-order Gaussians to filter and up-sample the original vessel profile. This is then segmented to identify and represent the vessel edges by two Generalized Gaussian functions. The technique has been applied to retinal images and the results have been verified and compared with the state of the art automatic techniques.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22254875</pmid><doi>10.1109/IEMBS.2011.6090719</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.2606-2609 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6090719 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Australia Automation Biomedical measurements Educational institutions Estimation Fitting Gaussian representation Humans Noise measurement Regression Analysis Retinal image Retinal vessels Retinal Vessels - physiology Vessel profile |
title | Automatic retinal vessel profiling using multi-step regression method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20retinal%20vessel%20profiling%20using%20multi-step%20regression%20method&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Aliahmad,%20B.&rft.date=2011-01-01&rft.volume=2011&rft.spage=2606&rft.epage=2609&rft.pages=2606-2609&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6090719&rft_dat=%3Cpubmed_6IE%3E22254875%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22254875&rft_ieee_id=6090719&rfr_iscdi=true |