Automatic retinal vessel profiling using multi-step regression method

Caliber of the retinal blood vessel is widely used for risk assessment of cardiovascular diseases. Accurate and automatic caliber measurement requires a precise model to be made for the vessel profile. In this paper, we present a new approach for retinal vessel profiling in which the background nois...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aliahmad, B., Kumar, D. K., Janghorban, S., Azemin, M. Z. C., Hao Hao, Kawasaki, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2609
container_issue
container_start_page 2606
container_title
container_volume 2011
creator Aliahmad, B.
Kumar, D. K.
Janghorban, S.
Azemin, M. Z. C.
Hao Hao
Kawasaki, R.
description Caliber of the retinal blood vessel is widely used for risk assessment of cardiovascular diseases. Accurate and automatic caliber measurement requires a precise model to be made for the vessel profile. In this paper, we present a new approach for retinal vessel profiling in which the background noise, uneven illuminations and specular reflections have all been considered. In this method, regression analysis is performed with a series of second-order Gaussians to filter and up-sample the original vessel profile. This is then segmented to identify and represent the vessel edges by two Generalized Gaussian functions. The technique has been applied to retinal images and the results have been verified and compared with the state of the art automatic techniques.
doi_str_mv 10.1109/IEMBS.2011.6090719
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6090719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6090719</ieee_id><sourcerecordid>22254875</sourcerecordid><originalsourceid>FETCH-LOGICAL-i300t-c1629aacd1353ff7c49bc67174c8730bcd118125d84236a1a763ba12f03e20ae3</originalsourceid><addsrcrecordid>eNo9kNtKw0AQhtcTtta-gILkBVJ3Zs-XtVQtVLxQwbuySTZ1JWlCdiP49kZsnYuZi-_jh38IuQI6A6DmdrV8unuZIQWYSWqoAnNELoAj5xwQ5TEZgxA65RLECZkapQ8M4HRg1PBUavU-ItMQPukwUhrG8JyMEFFwrcSYLOd9bGobfZ50LvqdrZIvF4KrkrZrSl_53Tbpw--u-yr6NETXDua2GyTf7JLaxY-muCRnpa2Cm-7vhLzdL18Xj-n6-WG1mK9TzyiNaQ4SjbV5AUywslQ5N1kuFSiea8VoNgDQgKLQHJm0YJVkmQUsKXNIrWMTcvOX2_ZZ7YpN2_nadt-bQ59BuP4TvHPuH--_x34AKOFcWQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic retinal vessel profiling using multi-step regression method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Aliahmad, B. ; Kumar, D. K. ; Janghorban, S. ; Azemin, M. Z. C. ; Hao Hao ; Kawasaki, R.</creator><creatorcontrib>Aliahmad, B. ; Kumar, D. K. ; Janghorban, S. ; Azemin, M. Z. C. ; Hao Hao ; Kawasaki, R.</creatorcontrib><description>Caliber of the retinal blood vessel is widely used for risk assessment of cardiovascular diseases. Accurate and automatic caliber measurement requires a precise model to be made for the vessel profile. In this paper, we present a new approach for retinal vessel profiling in which the background noise, uneven illuminations and specular reflections have all been considered. In this method, regression analysis is performed with a series of second-order Gaussians to filter and up-sample the original vessel profile. This is then segmented to identify and represent the vessel edges by two Generalized Gaussian functions. The technique has been applied to retinal images and the results have been verified and compared with the state of the art automatic techniques.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6090719</identifier><identifier>PMID: 22254875</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Australia ; Automation ; Biomedical measurements ; Educational institutions ; Estimation ; Fitting ; Gaussian representation ; Humans ; Noise measurement ; Regression Analysis ; Retinal image ; Retinal vessels ; Retinal Vessels - physiology ; Vessel profile</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.2606-2609</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6090719$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6090719$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22254875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aliahmad, B.</creatorcontrib><creatorcontrib>Kumar, D. K.</creatorcontrib><creatorcontrib>Janghorban, S.</creatorcontrib><creatorcontrib>Azemin, M. Z. C.</creatorcontrib><creatorcontrib>Hao Hao</creatorcontrib><creatorcontrib>Kawasaki, R.</creatorcontrib><title>Automatic retinal vessel profiling using multi-step regression method</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Caliber of the retinal blood vessel is widely used for risk assessment of cardiovascular diseases. Accurate and automatic caliber measurement requires a precise model to be made for the vessel profile. In this paper, we present a new approach for retinal vessel profiling in which the background noise, uneven illuminations and specular reflections have all been considered. In this method, regression analysis is performed with a series of second-order Gaussians to filter and up-sample the original vessel profile. This is then segmented to identify and represent the vessel edges by two Generalized Gaussian functions. The technique has been applied to retinal images and the results have been verified and compared with the state of the art automatic techniques.</description><subject>Australia</subject><subject>Automation</subject><subject>Biomedical measurements</subject><subject>Educational institutions</subject><subject>Estimation</subject><subject>Fitting</subject><subject>Gaussian representation</subject><subject>Humans</subject><subject>Noise measurement</subject><subject>Regression Analysis</subject><subject>Retinal image</subject><subject>Retinal vessels</subject><subject>Retinal Vessels - physiology</subject><subject>Vessel profile</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kNtKw0AQhtcTtta-gILkBVJ3Zs-XtVQtVLxQwbuySTZ1JWlCdiP49kZsnYuZi-_jh38IuQI6A6DmdrV8unuZIQWYSWqoAnNELoAj5xwQ5TEZgxA65RLECZkapQ8M4HRg1PBUavU-ItMQPukwUhrG8JyMEFFwrcSYLOd9bGobfZ50LvqdrZIvF4KrkrZrSl_53Tbpw--u-yr6NETXDua2GyTf7JLaxY-muCRnpa2Cm-7vhLzdL18Xj-n6-WG1mK9TzyiNaQ4SjbV5AUywslQ5N1kuFSiea8VoNgDQgKLQHJm0YJVkmQUsKXNIrWMTcvOX2_ZZ7YpN2_nadt-bQ59BuP4TvHPuH--_x34AKOFcWQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Aliahmad, B.</creator><creator>Kumar, D. K.</creator><creator>Janghorban, S.</creator><creator>Azemin, M. Z. C.</creator><creator>Hao Hao</creator><creator>Kawasaki, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>Automatic retinal vessel profiling using multi-step regression method</title><author>Aliahmad, B. ; Kumar, D. K. ; Janghorban, S. ; Azemin, M. Z. C. ; Hao Hao ; Kawasaki, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i300t-c1629aacd1353ff7c49bc67174c8730bcd118125d84236a1a763ba12f03e20ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Australia</topic><topic>Automation</topic><topic>Biomedical measurements</topic><topic>Educational institutions</topic><topic>Estimation</topic><topic>Fitting</topic><topic>Gaussian representation</topic><topic>Humans</topic><topic>Noise measurement</topic><topic>Regression Analysis</topic><topic>Retinal image</topic><topic>Retinal vessels</topic><topic>Retinal Vessels - physiology</topic><topic>Vessel profile</topic><toplevel>online_resources</toplevel><creatorcontrib>Aliahmad, B.</creatorcontrib><creatorcontrib>Kumar, D. K.</creatorcontrib><creatorcontrib>Janghorban, S.</creatorcontrib><creatorcontrib>Azemin, M. Z. C.</creatorcontrib><creatorcontrib>Hao Hao</creatorcontrib><creatorcontrib>Kawasaki, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aliahmad, B.</au><au>Kumar, D. K.</au><au>Janghorban, S.</au><au>Azemin, M. Z. C.</au><au>Hao Hao</au><au>Kawasaki, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic retinal vessel profiling using multi-step regression method</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>2606</spage><epage>2609</epage><pages>2606-2609</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>Caliber of the retinal blood vessel is widely used for risk assessment of cardiovascular diseases. Accurate and automatic caliber measurement requires a precise model to be made for the vessel profile. In this paper, we present a new approach for retinal vessel profiling in which the background noise, uneven illuminations and specular reflections have all been considered. In this method, regression analysis is performed with a series of second-order Gaussians to filter and up-sample the original vessel profile. This is then segmented to identify and represent the vessel edges by two Generalized Gaussian functions. The technique has been applied to retinal images and the results have been verified and compared with the state of the art automatic techniques.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22254875</pmid><doi>10.1109/IEMBS.2011.6090719</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.2606-2609
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6090719
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Australia
Automation
Biomedical measurements
Educational institutions
Estimation
Fitting
Gaussian representation
Humans
Noise measurement
Regression Analysis
Retinal image
Retinal vessels
Retinal Vessels - physiology
Vessel profile
title Automatic retinal vessel profiling using multi-step regression method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20retinal%20vessel%20profiling%20using%20multi-step%20regression%20method&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Aliahmad,%20B.&rft.date=2011-01-01&rft.volume=2011&rft.spage=2606&rft.epage=2609&rft.pages=2606-2609&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6090719&rft_dat=%3Cpubmed_6IE%3E22254875%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22254875&rft_ieee_id=6090719&rfr_iscdi=true