Phase-based features for motor imagery brain-computer interfaces
Motor imagery (MI) brain-computer interfaces (BCIs) translate a subject's motor intention to a command signal. Most MI BCIs use power features in the mu or beta rhythms, while several results have been reported using a measure of phase synchrony, the phase-locking value (PLV). In this study, we...
Gespeichert in:
Veröffentlicht in: | 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011-01, Vol.2011, p.2578-2581 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2581 |
---|---|
container_issue | |
container_start_page | 2578 |
container_title | 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
container_volume | 2011 |
creator | Hamner, B. Leeb, R. Tavella, M. del R Millan, J. |
description | Motor imagery (MI) brain-computer interfaces (BCIs) translate a subject's motor intention to a command signal. Most MI BCIs use power features in the mu or beta rhythms, while several results have been reported using a measure of phase synchrony, the phase-locking value (PLV). In this study, we investigated the performance of various phase-based features, including instantaneous phase difference (IPD) and PLV, for control of a MI BCI. Patterns of phase synchrony differentially appear over the motor cortices and between the primary motor cortex (M1) and supplementary motor area (SMA) during MI. Offline results, along with preliminary online sessions, indicate that IPD serves as a robust control signal for differentiating between MI classes, and that the phase relations between channels are relatively stable over several months. Offline and online trial-level classification accuracies based on IPD ranged from 84% to 99%, whereas the performance for the corresponding amplitude features ranged from 70% to 100%. |
doi_str_mv | 10.1109/IEMBS.2011.6090712 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6090712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6090712</ieee_id><sourcerecordid>22254868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-acea48c54b7e39d0f677daea0fca5339eaa7b2f143bc6d6ec9fc9cdaf04f13533</originalsourceid><addsrcrecordid>eNo9kN1OwzAMhcOf2Bh9AZBQXyAjTtKkuWNMAyYNgQRI3E1u6kARXae2u9jbE2kbvjiWfD5Zx2bsCsQYQLjb-ez5_m0sBcDYCCcsyCN2AVpqrUFKc8yGkGU51wayE5Y4mx88gNPoCae5ye3ngCVd9yNiGeOUkudsIKXMdG7yIbt7_caOeBGlTANhv2mpS0PTpnXTR61q_KJ2mxYtVivum3q96SmOV1EDeuou2VnA346SfR-xj4fZ-_SJL14e59PJgnvlVM8jijr3mS4sKVeKYKwtkVAEj5lSjhBtIQNoVXhTGvIueOdLDEIHUJEYsZvd3vWmqKlcrtsYrd0uD6dE4HoHVET0b-8fp_4AV8Bb6g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase-based features for motor imagery brain-computer interfaces</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hamner, B. ; Leeb, R. ; Tavella, M. ; del R Millan, J.</creator><creatorcontrib>Hamner, B. ; Leeb, R. ; Tavella, M. ; del R Millan, J.</creatorcontrib><description>Motor imagery (MI) brain-computer interfaces (BCIs) translate a subject's motor intention to a command signal. Most MI BCIs use power features in the mu or beta rhythms, while several results have been reported using a measure of phase synchrony, the phase-locking value (PLV). In this study, we investigated the performance of various phase-based features, including instantaneous phase difference (IPD) and PLV, for control of a MI BCI. Patterns of phase synchrony differentially appear over the motor cortices and between the primary motor cortex (M1) and supplementary motor area (SMA) during MI. Offline results, along with preliminary online sessions, indicate that IPD serves as a robust control signal for differentiating between MI classes, and that the phase relations between channels are relatively stable over several months. Offline and online trial-level classification accuracies based on IPD ranged from 84% to 99%, whereas the performance for the corresponding amplitude features ranged from 70% to 100%.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6090712</identifier><identifier>PMID: 22254868</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayes Theorem ; BCI ; Brain computer interfaces ; Brain modeling ; EEG ; Electroencephalography ; Feature extraction ; Humans ; instantaneous phase difference ; Man-Machine Systems ; Motor Cortex - physiology ; motor imagery ; Niobium ; phase synchrony ; Probability ; Synchronization ; Training ; User-Computer Interface</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011-01, Vol.2011, p.2578-2581</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-acea48c54b7e39d0f677daea0fca5339eaa7b2f143bc6d6ec9fc9cdaf04f13533</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6090712$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6090712$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22254868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamner, B.</creatorcontrib><creatorcontrib>Leeb, R.</creatorcontrib><creatorcontrib>Tavella, M.</creatorcontrib><creatorcontrib>del R Millan, J.</creatorcontrib><title>Phase-based features for motor imagery brain-computer interfaces</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Motor imagery (MI) brain-computer interfaces (BCIs) translate a subject's motor intention to a command signal. Most MI BCIs use power features in the mu or beta rhythms, while several results have been reported using a measure of phase synchrony, the phase-locking value (PLV). In this study, we investigated the performance of various phase-based features, including instantaneous phase difference (IPD) and PLV, for control of a MI BCI. Patterns of phase synchrony differentially appear over the motor cortices and between the primary motor cortex (M1) and supplementary motor area (SMA) during MI. Offline results, along with preliminary online sessions, indicate that IPD serves as a robust control signal for differentiating between MI classes, and that the phase relations between channels are relatively stable over several months. Offline and online trial-level classification accuracies based on IPD ranged from 84% to 99%, whereas the performance for the corresponding amplitude features ranged from 70% to 100%.</description><subject>Bayes Theorem</subject><subject>BCI</subject><subject>Brain computer interfaces</subject><subject>Brain modeling</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>instantaneous phase difference</subject><subject>Man-Machine Systems</subject><subject>Motor Cortex - physiology</subject><subject>motor imagery</subject><subject>Niobium</subject><subject>phase synchrony</subject><subject>Probability</subject><subject>Synchronization</subject><subject>Training</subject><subject>User-Computer Interface</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kN1OwzAMhcOf2Bh9AZBQXyAjTtKkuWNMAyYNgQRI3E1u6kARXae2u9jbE2kbvjiWfD5Zx2bsCsQYQLjb-ez5_m0sBcDYCCcsyCN2AVpqrUFKc8yGkGU51wayE5Y4mx88gNPoCae5ye3ngCVd9yNiGeOUkudsIKXMdG7yIbt7_caOeBGlTANhv2mpS0PTpnXTR61q_KJ2mxYtVivum3q96SmOV1EDeuou2VnA346SfR-xj4fZ-_SJL14e59PJgnvlVM8jijr3mS4sKVeKYKwtkVAEj5lSjhBtIQNoVXhTGvIueOdLDEIHUJEYsZvd3vWmqKlcrtsYrd0uD6dE4HoHVET0b-8fp_4AV8Bb6g</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Hamner, B.</creator><creator>Leeb, R.</creator><creator>Tavella, M.</creator><creator>del R Millan, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>Phase-based features for motor imagery brain-computer interfaces</title><author>Hamner, B. ; Leeb, R. ; Tavella, M. ; del R Millan, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-acea48c54b7e39d0f677daea0fca5339eaa7b2f143bc6d6ec9fc9cdaf04f13533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayes Theorem</topic><topic>BCI</topic><topic>Brain computer interfaces</topic><topic>Brain modeling</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>instantaneous phase difference</topic><topic>Man-Machine Systems</topic><topic>Motor Cortex - physiology</topic><topic>motor imagery</topic><topic>Niobium</topic><topic>phase synchrony</topic><topic>Probability</topic><topic>Synchronization</topic><topic>Training</topic><topic>User-Computer Interface</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamner, B.</creatorcontrib><creatorcontrib>Leeb, R.</creatorcontrib><creatorcontrib>Tavella, M.</creatorcontrib><creatorcontrib>del R Millan, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamner, B.</au><au>Leeb, R.</au><au>Tavella, M.</au><au>del R Millan, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-based features for motor imagery brain-computer interfaces</atitle><jtitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>2578</spage><epage>2581</epage><pages>2578-2581</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>Motor imagery (MI) brain-computer interfaces (BCIs) translate a subject's motor intention to a command signal. Most MI BCIs use power features in the mu or beta rhythms, while several results have been reported using a measure of phase synchrony, the phase-locking value (PLV). In this study, we investigated the performance of various phase-based features, including instantaneous phase difference (IPD) and PLV, for control of a MI BCI. Patterns of phase synchrony differentially appear over the motor cortices and between the primary motor cortex (M1) and supplementary motor area (SMA) during MI. Offline results, along with preliminary online sessions, indicate that IPD serves as a robust control signal for differentiating between MI classes, and that the phase relations between channels are relatively stable over several months. Offline and online trial-level classification accuracies based on IPD ranged from 84% to 99%, whereas the performance for the corresponding amplitude features ranged from 70% to 100%.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22254868</pmid><doi>10.1109/IEMBS.2011.6090712</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011-01, Vol.2011, p.2578-2581 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_6090712 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayes Theorem BCI Brain computer interfaces Brain modeling EEG Electroencephalography Feature extraction Humans instantaneous phase difference Man-Machine Systems Motor Cortex - physiology motor imagery Niobium phase synchrony Probability Synchronization Training User-Computer Interface |
title | Phase-based features for motor imagery brain-computer interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-based%20features%20for%20motor%20imagery%20brain-computer%20interfaces&rft.jtitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Hamner,%20B.&rft.date=2011-01-01&rft.volume=2011&rft.spage=2578&rft.epage=2581&rft.pages=2578-2581&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6090712&rft_dat=%3Cpubmed_6IE%3E22254868%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22254868&rft_ieee_id=6090712&rfr_iscdi=true |