Phase-based features for motor imagery brain-computer interfaces

Motor imagery (MI) brain-computer interfaces (BCIs) translate a subject's motor intention to a command signal. Most MI BCIs use power features in the mu or beta rhythms, while several results have been reported using a measure of phase synchrony, the phase-locking value (PLV). In this study, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011-01, Vol.2011, p.2578-2581
Hauptverfasser: Hamner, B., Leeb, R., Tavella, M., del R Millan, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2581
container_issue
container_start_page 2578
container_title 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume 2011
creator Hamner, B.
Leeb, R.
Tavella, M.
del R Millan, J.
description Motor imagery (MI) brain-computer interfaces (BCIs) translate a subject's motor intention to a command signal. Most MI BCIs use power features in the mu or beta rhythms, while several results have been reported using a measure of phase synchrony, the phase-locking value (PLV). In this study, we investigated the performance of various phase-based features, including instantaneous phase difference (IPD) and PLV, for control of a MI BCI. Patterns of phase synchrony differentially appear over the motor cortices and between the primary motor cortex (M1) and supplementary motor area (SMA) during MI. Offline results, along with preliminary online sessions, indicate that IPD serves as a robust control signal for differentiating between MI classes, and that the phase relations between channels are relatively stable over several months. Offline and online trial-level classification accuracies based on IPD ranged from 84% to 99%, whereas the performance for the corresponding amplitude features ranged from 70% to 100%.
doi_str_mv 10.1109/IEMBS.2011.6090712
format Article
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6090712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6090712</ieee_id><sourcerecordid>22254868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-acea48c54b7e39d0f677daea0fca5339eaa7b2f143bc6d6ec9fc9cdaf04f13533</originalsourceid><addsrcrecordid>eNo9kN1OwzAMhcOf2Bh9AZBQXyAjTtKkuWNMAyYNgQRI3E1u6kARXae2u9jbE2kbvjiWfD5Zx2bsCsQYQLjb-ez5_m0sBcDYCCcsyCN2AVpqrUFKc8yGkGU51wayE5Y4mx88gNPoCae5ye3ngCVd9yNiGeOUkudsIKXMdG7yIbt7_caOeBGlTANhv2mpS0PTpnXTR61q_KJ2mxYtVivum3q96SmOV1EDeuou2VnA346SfR-xj4fZ-_SJL14e59PJgnvlVM8jijr3mS4sKVeKYKwtkVAEj5lSjhBtIQNoVXhTGvIueOdLDEIHUJEYsZvd3vWmqKlcrtsYrd0uD6dE4HoHVET0b-8fp_4AV8Bb6g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase-based features for motor imagery brain-computer interfaces</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hamner, B. ; Leeb, R. ; Tavella, M. ; del R Millan, J.</creator><creatorcontrib>Hamner, B. ; Leeb, R. ; Tavella, M. ; del R Millan, J.</creatorcontrib><description>Motor imagery (MI) brain-computer interfaces (BCIs) translate a subject's motor intention to a command signal. Most MI BCIs use power features in the mu or beta rhythms, while several results have been reported using a measure of phase synchrony, the phase-locking value (PLV). In this study, we investigated the performance of various phase-based features, including instantaneous phase difference (IPD) and PLV, for control of a MI BCI. Patterns of phase synchrony differentially appear over the motor cortices and between the primary motor cortex (M1) and supplementary motor area (SMA) during MI. Offline results, along with preliminary online sessions, indicate that IPD serves as a robust control signal for differentiating between MI classes, and that the phase relations between channels are relatively stable over several months. Offline and online trial-level classification accuracies based on IPD ranged from 84% to 99%, whereas the performance for the corresponding amplitude features ranged from 70% to 100%.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6090712</identifier><identifier>PMID: 22254868</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayes Theorem ; BCI ; Brain computer interfaces ; Brain modeling ; EEG ; Electroencephalography ; Feature extraction ; Humans ; instantaneous phase difference ; Man-Machine Systems ; Motor Cortex - physiology ; motor imagery ; Niobium ; phase synchrony ; Probability ; Synchronization ; Training ; User-Computer Interface</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011-01, Vol.2011, p.2578-2581</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-acea48c54b7e39d0f677daea0fca5339eaa7b2f143bc6d6ec9fc9cdaf04f13533</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6090712$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6090712$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22254868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamner, B.</creatorcontrib><creatorcontrib>Leeb, R.</creatorcontrib><creatorcontrib>Tavella, M.</creatorcontrib><creatorcontrib>del R Millan, J.</creatorcontrib><title>Phase-based features for motor imagery brain-computer interfaces</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>Motor imagery (MI) brain-computer interfaces (BCIs) translate a subject's motor intention to a command signal. Most MI BCIs use power features in the mu or beta rhythms, while several results have been reported using a measure of phase synchrony, the phase-locking value (PLV). In this study, we investigated the performance of various phase-based features, including instantaneous phase difference (IPD) and PLV, for control of a MI BCI. Patterns of phase synchrony differentially appear over the motor cortices and between the primary motor cortex (M1) and supplementary motor area (SMA) during MI. Offline results, along with preliminary online sessions, indicate that IPD serves as a robust control signal for differentiating between MI classes, and that the phase relations between channels are relatively stable over several months. Offline and online trial-level classification accuracies based on IPD ranged from 84% to 99%, whereas the performance for the corresponding amplitude features ranged from 70% to 100%.</description><subject>Bayes Theorem</subject><subject>BCI</subject><subject>Brain computer interfaces</subject><subject>Brain modeling</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>instantaneous phase difference</subject><subject>Man-Machine Systems</subject><subject>Motor Cortex - physiology</subject><subject>motor imagery</subject><subject>Niobium</subject><subject>phase synchrony</subject><subject>Probability</subject><subject>Synchronization</subject><subject>Training</subject><subject>User-Computer Interface</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kN1OwzAMhcOf2Bh9AZBQXyAjTtKkuWNMAyYNgQRI3E1u6kARXae2u9jbE2kbvjiWfD5Zx2bsCsQYQLjb-ez5_m0sBcDYCCcsyCN2AVpqrUFKc8yGkGU51wayE5Y4mx88gNPoCae5ye3ngCVd9yNiGeOUkudsIKXMdG7yIbt7_caOeBGlTANhv2mpS0PTpnXTR61q_KJ2mxYtVivum3q96SmOV1EDeuou2VnA346SfR-xj4fZ-_SJL14e59PJgnvlVM8jijr3mS4sKVeKYKwtkVAEj5lSjhBtIQNoVXhTGvIueOdLDEIHUJEYsZvd3vWmqKlcrtsYrd0uD6dE4HoHVET0b-8fp_4AV8Bb6g</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Hamner, B.</creator><creator>Leeb, R.</creator><creator>Tavella, M.</creator><creator>del R Millan, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>Phase-based features for motor imagery brain-computer interfaces</title><author>Hamner, B. ; Leeb, R. ; Tavella, M. ; del R Millan, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-acea48c54b7e39d0f677daea0fca5339eaa7b2f143bc6d6ec9fc9cdaf04f13533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayes Theorem</topic><topic>BCI</topic><topic>Brain computer interfaces</topic><topic>Brain modeling</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>instantaneous phase difference</topic><topic>Man-Machine Systems</topic><topic>Motor Cortex - physiology</topic><topic>motor imagery</topic><topic>Niobium</topic><topic>phase synchrony</topic><topic>Probability</topic><topic>Synchronization</topic><topic>Training</topic><topic>User-Computer Interface</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamner, B.</creatorcontrib><creatorcontrib>Leeb, R.</creatorcontrib><creatorcontrib>Tavella, M.</creatorcontrib><creatorcontrib>del R Millan, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamner, B.</au><au>Leeb, R.</au><au>Tavella, M.</au><au>del R Millan, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-based features for motor imagery brain-computer interfaces</atitle><jtitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>2578</spage><epage>2581</epage><pages>2578-2581</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>Motor imagery (MI) brain-computer interfaces (BCIs) translate a subject's motor intention to a command signal. Most MI BCIs use power features in the mu or beta rhythms, while several results have been reported using a measure of phase synchrony, the phase-locking value (PLV). In this study, we investigated the performance of various phase-based features, including instantaneous phase difference (IPD) and PLV, for control of a MI BCI. Patterns of phase synchrony differentially appear over the motor cortices and between the primary motor cortex (M1) and supplementary motor area (SMA) during MI. Offline results, along with preliminary online sessions, indicate that IPD serves as a robust control signal for differentiating between MI classes, and that the phase relations between channels are relatively stable over several months. Offline and online trial-level classification accuracies based on IPD ranged from 84% to 99%, whereas the performance for the corresponding amplitude features ranged from 70% to 100%.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22254868</pmid><doi>10.1109/IEMBS.2011.6090712</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011-01, Vol.2011, p.2578-2581
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6090712
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayes Theorem
BCI
Brain computer interfaces
Brain modeling
EEG
Electroencephalography
Feature extraction
Humans
instantaneous phase difference
Man-Machine Systems
Motor Cortex - physiology
motor imagery
Niobium
phase synchrony
Probability
Synchronization
Training
User-Computer Interface
title Phase-based features for motor imagery brain-computer interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-based%20features%20for%20motor%20imagery%20brain-computer%20interfaces&rft.jtitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Hamner,%20B.&rft.date=2011-01-01&rft.volume=2011&rft.spage=2578&rft.epage=2581&rft.pages=2578-2581&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6090712&rft_dat=%3Cpubmed_6IE%3E22254868%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22254868&rft_ieee_id=6090712&rfr_iscdi=true