Assessment of bradykinesia in Parkinson's disease patients through a multi-parametric system

The aim of this paper is to describe and present the results of the automatic detection and assessment of bradykinesia in motor disease patients using wireless, wearable accelerometers. The current work is related to a module of the PERFORM system, a FP7 project from the European Commission, that ai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pastorino, M., Cancela, J., Arredondo, M. T., Pansera, M., Pastor-Sanz, L., Villagra, F., Pastor, M. A., Martin, J. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1813
container_issue
container_start_page 1810
container_title
container_volume 2011
creator Pastorino, M.
Cancela, J.
Arredondo, M. T.
Pansera, M.
Pastor-Sanz, L.
Villagra, F.
Pastor, M. A.
Martin, J. A.
description The aim of this paper is to describe and present the results of the automatic detection and assessment of bradykinesia in motor disease patients using wireless, wearable accelerometers. The current work is related to a module of the PERFORM system, a FP7 project from the European Commission, that aims at providing an innovative and reliable tool, able to evaluate, monitor and manage patients suffering from Parkinson's disease. The assessment procedure was carried out through a developed C# library that detects the activities of the patient using an activity recognition algorithm and classifies the data using a Support Vector Machine trained with data coming from previous test phases. The accuracy between the output of the automatic detection and the evaluation of the clinician both expressed with the Unified Parkinson's disease Rating Scale, presents an average value of [68.3±8.9]%. A meta-analysis algorithm is used in order to improve the accuracy to an average value of [74.4±14.9]%. Future work will include a personalized training of the classifiers in order to achieve a higher level of accuracy.
doi_str_mv 10.1109/IEMBS.2011.6090516
format Conference Proceeding
fullrecord <record><control><sourceid>pubmed_6IE</sourceid><recordid>TN_cdi_ieee_primary_6090516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6090516</ieee_id><sourcerecordid>22254680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-7f37955a89c9fdbe4a192de6be3088dbb2f3127b564d777c04c0734025159b223</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhtcvbK39AwqyN0-pO_uZPdZStVBRUMGDUHaTiV1t0pBND_33Bto6l2F4Hl54h5ArYCMAZu9m0-f7txFnACPNLFOgj8gFSC6lBM71MemDUmkiNagTMrQmPTCA044xKxOdms8eGcb4w7rR2grBz0mPc66kTlmffI1jxBhLrFq6LqhvXL79DRXG4Gio6Ktruiuuq9tI8xDRRaS1a0OnR9oum_Xme0kdLTerNiS1a1yJbRMyGrexxfKSnBVuFXG43wPy8TB9nzwl85fH2WQ8TzIhbZuYQhirlEttZovco3RgeY7ao2BpmnvPCwHceKVlbozJmMyYEZJxBcp6zsWA3Oxy640vMV_UTShds10canbC9U4IiPiP908VfxkkZIA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Assessment of bradykinesia in Parkinson's disease patients through a multi-parametric system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pastorino, M. ; Cancela, J. ; Arredondo, M. T. ; Pansera, M. ; Pastor-Sanz, L. ; Villagra, F. ; Pastor, M. A. ; Martin, J. A.</creator><creatorcontrib>Pastorino, M. ; Cancela, J. ; Arredondo, M. T. ; Pansera, M. ; Pastor-Sanz, L. ; Villagra, F. ; Pastor, M. A. ; Martin, J. A.</creatorcontrib><description>The aim of this paper is to describe and present the results of the automatic detection and assessment of bradykinesia in motor disease patients using wireless, wearable accelerometers. The current work is related to a module of the PERFORM system, a FP7 project from the European Commission, that aims at providing an innovative and reliable tool, able to evaluate, monitor and manage patients suffering from Parkinson's disease. The assessment procedure was carried out through a developed C# library that detects the activities of the patient using an activity recognition algorithm and classifies the data using a Support Vector Machine trained with data coming from previous test phases. The accuracy between the output of the automatic detection and the evaluation of the clinician both expressed with the Unified Parkinson's disease Rating Scale, presents an average value of [68.3±8.9]%. A meta-analysis algorithm is used in order to improve the accuracy to an average value of [74.4±14.9]%. Future work will include a personalized training of the classifiers in order to achieve a higher level of accuracy.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424441211</identifier><identifier>ISBN: 1424441218</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441226</identifier><identifier>EISBN: 1457715899</identifier><identifier>EISBN: 9781457715891</identifier><identifier>EISBN: 9781424441228</identifier><identifier>DOI: 10.1109/IEMBS.2011.6090516</identifier><identifier>PMID: 22254680</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Actigraphy - instrumentation ; Adult ; Aged ; Basal ganglia ; Classification algorithms ; Diagnosis, Computer-Assisted - instrumentation ; Educational institutions ; Equipment Design ; Equipment Failure Analysis ; Feature extraction ; Female ; Humans ; Hypokinesia - diagnosis ; Hypokinesia - etiology ; Male ; Middle Aged ; Monitoring, Ambulatory - instrumentation ; Parkinson Disease - complications ; Parkinson Disease - diagnosis ; Parkinson's disease ; Protocols ; Reproducibility of Results ; Sensitivity and Specificity ; Support Vector Machine ; Telemetry - instrumentation</subject><ispartof>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.1810-1813</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-7f37955a89c9fdbe4a192de6be3088dbb2f3127b564d777c04c0734025159b223</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6090516$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6090516$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22254680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pastorino, M.</creatorcontrib><creatorcontrib>Cancela, J.</creatorcontrib><creatorcontrib>Arredondo, M. T.</creatorcontrib><creatorcontrib>Pansera, M.</creatorcontrib><creatorcontrib>Pastor-Sanz, L.</creatorcontrib><creatorcontrib>Villagra, F.</creatorcontrib><creatorcontrib>Pastor, M. A.</creatorcontrib><creatorcontrib>Martin, J. A.</creatorcontrib><title>Assessment of bradykinesia in Parkinson's disease patients through a multi-parametric system</title><title>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>The aim of this paper is to describe and present the results of the automatic detection and assessment of bradykinesia in motor disease patients using wireless, wearable accelerometers. The current work is related to a module of the PERFORM system, a FP7 project from the European Commission, that aims at providing an innovative and reliable tool, able to evaluate, monitor and manage patients suffering from Parkinson's disease. The assessment procedure was carried out through a developed C# library that detects the activities of the patient using an activity recognition algorithm and classifies the data using a Support Vector Machine trained with data coming from previous test phases. The accuracy between the output of the automatic detection and the evaluation of the clinician both expressed with the Unified Parkinson's disease Rating Scale, presents an average value of [68.3±8.9]%. A meta-analysis algorithm is used in order to improve the accuracy to an average value of [74.4±14.9]%. Future work will include a personalized training of the classifiers in order to achieve a higher level of accuracy.</description><subject>Accuracy</subject><subject>Actigraphy - instrumentation</subject><subject>Adult</subject><subject>Aged</subject><subject>Basal ganglia</subject><subject>Classification algorithms</subject><subject>Diagnosis, Computer-Assisted - instrumentation</subject><subject>Educational institutions</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Humans</subject><subject>Hypokinesia - diagnosis</subject><subject>Hypokinesia - etiology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>Parkinson Disease - complications</subject><subject>Parkinson Disease - diagnosis</subject><subject>Parkinson's disease</subject><subject>Protocols</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Support Vector Machine</subject><subject>Telemetry - instrumentation</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424441211</isbn><isbn>1424441218</isbn><isbn>1424441226</isbn><isbn>1457715899</isbn><isbn>9781457715891</isbn><isbn>9781424441228</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kE1Lw0AQhtcvbK39AwqyN0-pO_uZPdZStVBRUMGDUHaTiV1t0pBND_33Bto6l2F4Hl54h5ArYCMAZu9m0-f7txFnACPNLFOgj8gFSC6lBM71MemDUmkiNagTMrQmPTCA044xKxOdms8eGcb4w7rR2grBz0mPc66kTlmffI1jxBhLrFq6LqhvXL79DRXG4Gio6Ktruiuuq9tI8xDRRaS1a0OnR9oum_Xme0kdLTerNiS1a1yJbRMyGrexxfKSnBVuFXG43wPy8TB9nzwl85fH2WQ8TzIhbZuYQhirlEttZovco3RgeY7ao2BpmnvPCwHceKVlbozJmMyYEZJxBcp6zsWA3Oxy640vMV_UTShds10canbC9U4IiPiP908VfxkkZIA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Pastorino, M.</creator><creator>Cancela, J.</creator><creator>Arredondo, M. T.</creator><creator>Pansera, M.</creator><creator>Pastor-Sanz, L.</creator><creator>Villagra, F.</creator><creator>Pastor, M. A.</creator><creator>Martin, J. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20110101</creationdate><title>Assessment of bradykinesia in Parkinson's disease patients through a multi-parametric system</title><author>Pastorino, M. ; Cancela, J. ; Arredondo, M. T. ; Pansera, M. ; Pastor-Sanz, L. ; Villagra, F. ; Pastor, M. A. ; Martin, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-7f37955a89c9fdbe4a192de6be3088dbb2f3127b564d777c04c0734025159b223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Actigraphy - instrumentation</topic><topic>Adult</topic><topic>Aged</topic><topic>Basal ganglia</topic><topic>Classification algorithms</topic><topic>Diagnosis, Computer-Assisted - instrumentation</topic><topic>Educational institutions</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Humans</topic><topic>Hypokinesia - diagnosis</topic><topic>Hypokinesia - etiology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>Parkinson Disease - complications</topic><topic>Parkinson Disease - diagnosis</topic><topic>Parkinson's disease</topic><topic>Protocols</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Support Vector Machine</topic><topic>Telemetry - instrumentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Pastorino, M.</creatorcontrib><creatorcontrib>Cancela, J.</creatorcontrib><creatorcontrib>Arredondo, M. T.</creatorcontrib><creatorcontrib>Pansera, M.</creatorcontrib><creatorcontrib>Pastor-Sanz, L.</creatorcontrib><creatorcontrib>Villagra, F.</creatorcontrib><creatorcontrib>Pastor, M. A.</creatorcontrib><creatorcontrib>Martin, J. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pastorino, M.</au><au>Cancela, J.</au><au>Arredondo, M. T.</au><au>Pansera, M.</au><au>Pastor-Sanz, L.</au><au>Villagra, F.</au><au>Pastor, M. A.</au><au>Martin, J. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Assessment of bradykinesia in Parkinson's disease patients through a multi-parametric system</atitle><btitle>2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><spage>1810</spage><epage>1813</epage><pages>1810-1813</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424441211</isbn><isbn>1424441218</isbn><eisbn>1424441226</eisbn><eisbn>1457715899</eisbn><eisbn>9781457715891</eisbn><eisbn>9781424441228</eisbn><abstract>The aim of this paper is to describe and present the results of the automatic detection and assessment of bradykinesia in motor disease patients using wireless, wearable accelerometers. The current work is related to a module of the PERFORM system, a FP7 project from the European Commission, that aims at providing an innovative and reliable tool, able to evaluate, monitor and manage patients suffering from Parkinson's disease. The assessment procedure was carried out through a developed C# library that detects the activities of the patient using an activity recognition algorithm and classifies the data using a Support Vector Machine trained with data coming from previous test phases. The accuracy between the output of the automatic detection and the evaluation of the clinician both expressed with the Unified Parkinson's disease Rating Scale, presents an average value of [68.3±8.9]%. A meta-analysis algorithm is used in order to improve the accuracy to an average value of [74.4±14.9]%. Future work will include a personalized training of the classifiers in order to achieve a higher level of accuracy.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22254680</pmid><doi>10.1109/IEMBS.2011.6090516</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Vol.2011, p.1810-1813
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_ieee_primary_6090516
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Actigraphy - instrumentation
Adult
Aged
Basal ganglia
Classification algorithms
Diagnosis, Computer-Assisted - instrumentation
Educational institutions
Equipment Design
Equipment Failure Analysis
Feature extraction
Female
Humans
Hypokinesia - diagnosis
Hypokinesia - etiology
Male
Middle Aged
Monitoring, Ambulatory - instrumentation
Parkinson Disease - complications
Parkinson Disease - diagnosis
Parkinson's disease
Protocols
Reproducibility of Results
Sensitivity and Specificity
Support Vector Machine
Telemetry - instrumentation
title Assessment of bradykinesia in Parkinson's disease patients through a multi-parametric system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Assessment%20of%20bradykinesia%20in%20Parkinson's%20disease%20patients%20through%20a%20multi-parametric%20system&rft.btitle=2011%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Pastorino,%20M.&rft.date=2011-01-01&rft.volume=2011&rft.spage=1810&rft.epage=1813&rft.pages=1810-1813&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424441211&rft.isbn_list=1424441218&rft_id=info:doi/10.1109/IEMBS.2011.6090516&rft_dat=%3Cpubmed_6IE%3E22254680%3C/pubmed_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424441226&rft.eisbn_list=1457715899&rft.eisbn_list=9781457715891&rft.eisbn_list=9781424441228&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22254680&rft_ieee_id=6090516&rfr_iscdi=true