Parallel Association Rule Mining for Medical Applications
For real-time applications that consist of massive number of rules, partitioning of the rules to support parallel processing is important. This paper proposes a suite of algorithms called GAPCM for parallel processing of massive number of rules. By considering even distribution, minimal waiting time...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For real-time applications that consist of massive number of rules, partitioning of the rules to support parallel processing is important. This paper proposes a suite of algorithms called GAPCM for parallel processing of massive number of rules. By considering even distribution, minimal waiting time and minimal inter-processor communication, we propose three algorithms for subnet allocation, and apply these algorithms to association rule mining. |
---|---|
DOI: | 10.1109/BIBE.2011.31 |