Variable stroke timing of rubber fins' duty cycle improves force

Swimming animals can tune their kinematics to achieve increased propulsive performance. To engineer effective propulsive mechanisms, a better correlation between kinematics and dynamics is required in artificial designs. Two rubber fins: one with a NACA aerofoil shape, the other with a biomimetic sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Collins, K. M., Brown, J. C., Ladd, R. R., Chambers, L. D., Bowyer, A., Megill, W. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 618
container_issue
container_start_page 613
container_title
container_volume
creator Collins, K. M.
Brown, J. C.
Ladd, R. R.
Chambers, L. D.
Bowyer, A.
Megill, W. M.
description Swimming animals can tune their kinematics to achieve increased propulsive performance. To engineer effective propulsive mechanisms, a better correlation between kinematics and dynamics is required in artificial designs. Two rubber fins: one with a NACA aerofoil shape, the other with a biomimetic shape, were used in two asymmetric oscillations in a static water tank. The force generation patterns within the parameter space and the response to the change in stroke timing, were dependant on the fin. The biomimetic fin produced peak force at a similar frequency and amplitude regardless of its kinematics and duty cycle. The response of the NACA fin, however, was dependent on the duty cycle. For the NACA fin, the fast-to-centreline kinematics caused larger resultant force over a narrow range of frequencies. For the fast-to-maximum-amplitude stroke, a lower resultant force was achieved, but over a larger range of frequencies. Digital Particle Image Velocimetry (DPIV) analysis showed the wake pattern of shed vortices. We present experiments and qualitative flow analysis that relate kinematic parameters, particularly the trailing-edge angle to resultant forces.
doi_str_mv 10.1109/ICAR.2011.6088630
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6088630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6088630</ieee_id><sourcerecordid>6088630</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1330-67efcb8aab8fa74a412f821eea5230e868dd8f81864a07489663089833be5713</originalsourceid><addsrcrecordid>eNo1j09LxDAUxCMiqGs_gHjJzVNrXpImrzdl8R8sCLJ4XZL2RaLb7ZJ0hX57C65zGQaGYX6MXYOoAERz97p8eK-kAKiMQDRKnLCisQi6thagtvKUXf4HVOesyPlLzDLSWpQX7P7Dpej8lnge0_BNfIx93H3yIfB08J4SD3GXb3l3GCfeTu1cjP0-DT-UeRhSS1fsLLhtpuLoC7Z-elwvX8rV2_N8blVGUEqUxlJoPTrnMTirnQYZUAKRq6UShAa7DgMCGu2E1diYmQUbVMpTbUEt2M3fbCSizT7F3qVpc2RWv0gkST4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Variable stroke timing of rubber fins' duty cycle improves force</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Collins, K. M. ; Brown, J. C. ; Ladd, R. R. ; Chambers, L. D. ; Bowyer, A. ; Megill, W. M.</creator><creatorcontrib>Collins, K. M. ; Brown, J. C. ; Ladd, R. R. ; Chambers, L. D. ; Bowyer, A. ; Megill, W. M.</creatorcontrib><description>Swimming animals can tune their kinematics to achieve increased propulsive performance. To engineer effective propulsive mechanisms, a better correlation between kinematics and dynamics is required in artificial designs. Two rubber fins: one with a NACA aerofoil shape, the other with a biomimetic shape, were used in two asymmetric oscillations in a static water tank. The force generation patterns within the parameter space and the response to the change in stroke timing, were dependant on the fin. The biomimetic fin produced peak force at a similar frequency and amplitude regardless of its kinematics and duty cycle. The response of the NACA fin, however, was dependent on the duty cycle. For the NACA fin, the fast-to-centreline kinematics caused larger resultant force over a narrow range of frequencies. For the fast-to-maximum-amplitude stroke, a lower resultant force was achieved, but over a larger range of frequencies. Digital Particle Image Velocimetry (DPIV) analysis showed the wake pattern of shed vortices. We present experiments and qualitative flow analysis that relate kinematic parameters, particularly the trailing-edge angle to resultant forces.</description><identifier>ISBN: 1457711583</identifier><identifier>ISBN: 9781457711589</identifier><identifier>EISBN: 9781457711572</identifier><identifier>EISBN: 1457711591</identifier><identifier>EISBN: 9781457711596</identifier><identifier>EISBN: 1457711575</identifier><identifier>DOI: 10.1109/ICAR.2011.6088630</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Educational institutions ; Robots</subject><ispartof>2011 15th International Conference on Advanced Robotics (ICAR), 2011, p.613-618</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6088630$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6088630$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Collins, K. M.</creatorcontrib><creatorcontrib>Brown, J. C.</creatorcontrib><creatorcontrib>Ladd, R. R.</creatorcontrib><creatorcontrib>Chambers, L. D.</creatorcontrib><creatorcontrib>Bowyer, A.</creatorcontrib><creatorcontrib>Megill, W. M.</creatorcontrib><title>Variable stroke timing of rubber fins' duty cycle improves force</title><title>2011 15th International Conference on Advanced Robotics (ICAR)</title><addtitle>ICAR</addtitle><description>Swimming animals can tune their kinematics to achieve increased propulsive performance. To engineer effective propulsive mechanisms, a better correlation between kinematics and dynamics is required in artificial designs. Two rubber fins: one with a NACA aerofoil shape, the other with a biomimetic shape, were used in two asymmetric oscillations in a static water tank. The force generation patterns within the parameter space and the response to the change in stroke timing, were dependant on the fin. The biomimetic fin produced peak force at a similar frequency and amplitude regardless of its kinematics and duty cycle. The response of the NACA fin, however, was dependent on the duty cycle. For the NACA fin, the fast-to-centreline kinematics caused larger resultant force over a narrow range of frequencies. For the fast-to-maximum-amplitude stroke, a lower resultant force was achieved, but over a larger range of frequencies. Digital Particle Image Velocimetry (DPIV) analysis showed the wake pattern of shed vortices. We present experiments and qualitative flow analysis that relate kinematic parameters, particularly the trailing-edge angle to resultant forces.</description><subject>Conferences</subject><subject>Educational institutions</subject><subject>Robots</subject><isbn>1457711583</isbn><isbn>9781457711589</isbn><isbn>9781457711572</isbn><isbn>1457711591</isbn><isbn>9781457711596</isbn><isbn>1457711575</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j09LxDAUxCMiqGs_gHjJzVNrXpImrzdl8R8sCLJ4XZL2RaLb7ZJ0hX57C65zGQaGYX6MXYOoAERz97p8eK-kAKiMQDRKnLCisQi6thagtvKUXf4HVOesyPlLzDLSWpQX7P7Dpej8lnge0_BNfIx93H3yIfB08J4SD3GXb3l3GCfeTu1cjP0-DT-UeRhSS1fsLLhtpuLoC7Z-elwvX8rV2_N8blVGUEqUxlJoPTrnMTirnQYZUAKRq6UShAa7DgMCGu2E1diYmQUbVMpTbUEt2M3fbCSizT7F3qVpc2RWv0gkST4</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Collins, K. M.</creator><creator>Brown, J. C.</creator><creator>Ladd, R. R.</creator><creator>Chambers, L. D.</creator><creator>Bowyer, A.</creator><creator>Megill, W. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Variable stroke timing of rubber fins' duty cycle improves force</title><author>Collins, K. M. ; Brown, J. C. ; Ladd, R. R. ; Chambers, L. D. ; Bowyer, A. ; Megill, W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1330-67efcb8aab8fa74a412f821eea5230e868dd8f81864a07489663089833be5713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Conferences</topic><topic>Educational institutions</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Collins, K. M.</creatorcontrib><creatorcontrib>Brown, J. C.</creatorcontrib><creatorcontrib>Ladd, R. R.</creatorcontrib><creatorcontrib>Chambers, L. D.</creatorcontrib><creatorcontrib>Bowyer, A.</creatorcontrib><creatorcontrib>Megill, W. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Collins, K. M.</au><au>Brown, J. C.</au><au>Ladd, R. R.</au><au>Chambers, L. D.</au><au>Bowyer, A.</au><au>Megill, W. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Variable stroke timing of rubber fins' duty cycle improves force</atitle><btitle>2011 15th International Conference on Advanced Robotics (ICAR)</btitle><stitle>ICAR</stitle><date>2011-06</date><risdate>2011</risdate><spage>613</spage><epage>618</epage><pages>613-618</pages><isbn>1457711583</isbn><isbn>9781457711589</isbn><eisbn>9781457711572</eisbn><eisbn>1457711591</eisbn><eisbn>9781457711596</eisbn><eisbn>1457711575</eisbn><abstract>Swimming animals can tune their kinematics to achieve increased propulsive performance. To engineer effective propulsive mechanisms, a better correlation between kinematics and dynamics is required in artificial designs. Two rubber fins: one with a NACA aerofoil shape, the other with a biomimetic shape, were used in two asymmetric oscillations in a static water tank. The force generation patterns within the parameter space and the response to the change in stroke timing, were dependant on the fin. The biomimetic fin produced peak force at a similar frequency and amplitude regardless of its kinematics and duty cycle. The response of the NACA fin, however, was dependent on the duty cycle. For the NACA fin, the fast-to-centreline kinematics caused larger resultant force over a narrow range of frequencies. For the fast-to-maximum-amplitude stroke, a lower resultant force was achieved, but over a larger range of frequencies. Digital Particle Image Velocimetry (DPIV) analysis showed the wake pattern of shed vortices. We present experiments and qualitative flow analysis that relate kinematic parameters, particularly the trailing-edge angle to resultant forces.</abstract><pub>IEEE</pub><doi>10.1109/ICAR.2011.6088630</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457711583
ispartof 2011 15th International Conference on Advanced Robotics (ICAR), 2011, p.613-618
issn
language eng
recordid cdi_ieee_primary_6088630
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Conferences
Educational institutions
Robots
title Variable stroke timing of rubber fins' duty cycle improves force
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Variable%20stroke%20timing%20of%20rubber%20fins'%20duty%20cycle%20improves%20force&rft.btitle=2011%2015th%20International%20Conference%20on%20Advanced%20Robotics%20(ICAR)&rft.au=Collins,%20K.%20M.&rft.date=2011-06&rft.spage=613&rft.epage=618&rft.pages=613-618&rft.isbn=1457711583&rft.isbn_list=9781457711589&rft_id=info:doi/10.1109/ICAR.2011.6088630&rft_dat=%3Cieee_6IE%3E6088630%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457711572&rft.eisbn_list=1457711591&rft.eisbn_list=9781457711596&rft.eisbn_list=1457711575&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6088630&rfr_iscdi=true