Towards iterative learning of autonomous robots using ILP

Inductive Logic Programming (ILP) induces first-order clausal theories from learning examples (positive and negative) and knowledge of the domain. Such theories can be used for gradually increasing the understanding of a robot about its world through iterative learning process. In this work we prese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Akhtar, N., Fuller, M., Kahl, B., Henne, T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue
container_start_page 409
container_title
container_volume
creator Akhtar, N.
Fuller, M.
Kahl, B.
Henne, T.
description Inductive Logic Programming (ILP) induces first-order clausal theories from learning examples (positive and negative) and knowledge of the domain. Such theories can be used for gradually increasing the understanding of a robot about its world through iterative learning process. In this work we present a method for autonomous creation of negative examples for an ILP learner (i.e. sifting method). We also present a method for managing the iterative learning process (i.e. step transition method) for an autonomous robot that uses the ILP learner for learning. The sifting method uses `out-of-domain' values of the parameters involved in the learning process to create a set of possible negative examples. From these examples the robot autonomously selects those which allow it to efficiently learn better hypotheses. The step transition method enables the autonomous robot to decide how should it learn the new knowledge such that it can also gain profit from its experience. The robot makes this decision by comparing results of two different learning processes conducted on different data sets produced by the same action of the robot. The proposed methods are developed using the ILP learner Aleph, however they can also be used with other similar ILP learners. We experiment with these methods for learning primitive concepts for a mobile autonomous robot in a simple world. Results of the experiments show that the robot learns meaningful definitions of different physical notions in a hierarchical manner.
doi_str_mv 10.1109/ICAR.2011.6088625
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6088625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6088625</ieee_id><sourcerecordid>6088625</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-84118f78218d5fe9f5b7ec7ed4e4a76f288181fa6fe19777ab4b9d9b00cde11b3</originalsourceid><addsrcrecordid>eNo1T9tKxDAUjIigrv0A8SU_0JqTXk7yKIuXhYIifV-S7YlEdhtJUsW_t-I6L8MwMBfGrkFUAELfbtZ3r5UUAFUnlOpke8IKjQqaFhGgRXnKLv-Fqs9ZkdK7WNBJRCUvmB7Cl4lj4j5TNNl_Et-TiZOf3nhw3Mw5TOEQ5sRjsCEnPqdfa9O_XLEzZ_aJiiOv2PBwP6yfyv75cVnVl16LXKoGQLmlCtTYOtKutUg7pLGhxmDnpFKgwJnOEWhENLaxetRWiN1IALZesZu_WE9E24_oDyZ-b49n6x9iXUhD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Towards iterative learning of autonomous robots using ILP</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Akhtar, N. ; Fuller, M. ; Kahl, B. ; Henne, T.</creator><creatorcontrib>Akhtar, N. ; Fuller, M. ; Kahl, B. ; Henne, T.</creatorcontrib><description>Inductive Logic Programming (ILP) induces first-order clausal theories from learning examples (positive and negative) and knowledge of the domain. Such theories can be used for gradually increasing the understanding of a robot about its world through iterative learning process. In this work we present a method for autonomous creation of negative examples for an ILP learner (i.e. sifting method). We also present a method for managing the iterative learning process (i.e. step transition method) for an autonomous robot that uses the ILP learner for learning. The sifting method uses `out-of-domain' values of the parameters involved in the learning process to create a set of possible negative examples. From these examples the robot autonomously selects those which allow it to efficiently learn better hypotheses. The step transition method enables the autonomous robot to decide how should it learn the new knowledge such that it can also gain profit from its experience. The robot makes this decision by comparing results of two different learning processes conducted on different data sets produced by the same action of the robot. The proposed methods are developed using the ILP learner Aleph, however they can also be used with other similar ILP learners. We experiment with these methods for learning primitive concepts for a mobile autonomous robot in a simple world. Results of the experiments show that the robot learns meaningful definitions of different physical notions in a hierarchical manner.</description><identifier>ISBN: 1457711583</identifier><identifier>ISBN: 9781457711589</identifier><identifier>EISBN: 9781457711572</identifier><identifier>EISBN: 1457711591</identifier><identifier>EISBN: 9781457711596</identifier><identifier>EISBN: 1457711575</identifier><identifier>DOI: 10.1109/ICAR.2011.6088625</identifier><language>eng</language><publisher>IEEE</publisher><subject>Educational institutions ; Learning systems ; Noise ; Robot sensing systems ; Space exploration ; Time measurement</subject><ispartof>2011 15th International Conference on Advanced Robotics (ICAR), 2011, p.409-414</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6088625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6088625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akhtar, N.</creatorcontrib><creatorcontrib>Fuller, M.</creatorcontrib><creatorcontrib>Kahl, B.</creatorcontrib><creatorcontrib>Henne, T.</creatorcontrib><title>Towards iterative learning of autonomous robots using ILP</title><title>2011 15th International Conference on Advanced Robotics (ICAR)</title><addtitle>ICAR</addtitle><description>Inductive Logic Programming (ILP) induces first-order clausal theories from learning examples (positive and negative) and knowledge of the domain. Such theories can be used for gradually increasing the understanding of a robot about its world through iterative learning process. In this work we present a method for autonomous creation of negative examples for an ILP learner (i.e. sifting method). We also present a method for managing the iterative learning process (i.e. step transition method) for an autonomous robot that uses the ILP learner for learning. The sifting method uses `out-of-domain' values of the parameters involved in the learning process to create a set of possible negative examples. From these examples the robot autonomously selects those which allow it to efficiently learn better hypotheses. The step transition method enables the autonomous robot to decide how should it learn the new knowledge such that it can also gain profit from its experience. The robot makes this decision by comparing results of two different learning processes conducted on different data sets produced by the same action of the robot. The proposed methods are developed using the ILP learner Aleph, however they can also be used with other similar ILP learners. We experiment with these methods for learning primitive concepts for a mobile autonomous robot in a simple world. Results of the experiments show that the robot learns meaningful definitions of different physical notions in a hierarchical manner.</description><subject>Educational institutions</subject><subject>Learning systems</subject><subject>Noise</subject><subject>Robot sensing systems</subject><subject>Space exploration</subject><subject>Time measurement</subject><isbn>1457711583</isbn><isbn>9781457711589</isbn><isbn>9781457711572</isbn><isbn>1457711591</isbn><isbn>9781457711596</isbn><isbn>1457711575</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T9tKxDAUjIigrv0A8SU_0JqTXk7yKIuXhYIifV-S7YlEdhtJUsW_t-I6L8MwMBfGrkFUAELfbtZ3r5UUAFUnlOpke8IKjQqaFhGgRXnKLv-Fqs9ZkdK7WNBJRCUvmB7Cl4lj4j5TNNl_Et-TiZOf3nhw3Mw5TOEQ5sRjsCEnPqdfa9O_XLEzZ_aJiiOv2PBwP6yfyv75cVnVl16LXKoGQLmlCtTYOtKutUg7pLGhxmDnpFKgwJnOEWhENLaxetRWiN1IALZesZu_WE9E24_oDyZ-b49n6x9iXUhD</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Akhtar, N.</creator><creator>Fuller, M.</creator><creator>Kahl, B.</creator><creator>Henne, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Towards iterative learning of autonomous robots using ILP</title><author>Akhtar, N. ; Fuller, M. ; Kahl, B. ; Henne, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-84118f78218d5fe9f5b7ec7ed4e4a76f288181fa6fe19777ab4b9d9b00cde11b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Educational institutions</topic><topic>Learning systems</topic><topic>Noise</topic><topic>Robot sensing systems</topic><topic>Space exploration</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Akhtar, N.</creatorcontrib><creatorcontrib>Fuller, M.</creatorcontrib><creatorcontrib>Kahl, B.</creatorcontrib><creatorcontrib>Henne, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akhtar, N.</au><au>Fuller, M.</au><au>Kahl, B.</au><au>Henne, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards iterative learning of autonomous robots using ILP</atitle><btitle>2011 15th International Conference on Advanced Robotics (ICAR)</btitle><stitle>ICAR</stitle><date>2011-06</date><risdate>2011</risdate><spage>409</spage><epage>414</epage><pages>409-414</pages><isbn>1457711583</isbn><isbn>9781457711589</isbn><eisbn>9781457711572</eisbn><eisbn>1457711591</eisbn><eisbn>9781457711596</eisbn><eisbn>1457711575</eisbn><abstract>Inductive Logic Programming (ILP) induces first-order clausal theories from learning examples (positive and negative) and knowledge of the domain. Such theories can be used for gradually increasing the understanding of a robot about its world through iterative learning process. In this work we present a method for autonomous creation of negative examples for an ILP learner (i.e. sifting method). We also present a method for managing the iterative learning process (i.e. step transition method) for an autonomous robot that uses the ILP learner for learning. The sifting method uses `out-of-domain' values of the parameters involved in the learning process to create a set of possible negative examples. From these examples the robot autonomously selects those which allow it to efficiently learn better hypotheses. The step transition method enables the autonomous robot to decide how should it learn the new knowledge such that it can also gain profit from its experience. The robot makes this decision by comparing results of two different learning processes conducted on different data sets produced by the same action of the robot. The proposed methods are developed using the ILP learner Aleph, however they can also be used with other similar ILP learners. We experiment with these methods for learning primitive concepts for a mobile autonomous robot in a simple world. Results of the experiments show that the robot learns meaningful definitions of different physical notions in a hierarchical manner.</abstract><pub>IEEE</pub><doi>10.1109/ICAR.2011.6088625</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457711583
ispartof 2011 15th International Conference on Advanced Robotics (ICAR), 2011, p.409-414
issn
language eng
recordid cdi_ieee_primary_6088625
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Educational institutions
Learning systems
Noise
Robot sensing systems
Space exploration
Time measurement
title Towards iterative learning of autonomous robots using ILP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20iterative%20learning%20of%20autonomous%20robots%20using%20ILP&rft.btitle=2011%2015th%20International%20Conference%20on%20Advanced%20Robotics%20(ICAR)&rft.au=Akhtar,%20N.&rft.date=2011-06&rft.spage=409&rft.epage=414&rft.pages=409-414&rft.isbn=1457711583&rft.isbn_list=9781457711589&rft_id=info:doi/10.1109/ICAR.2011.6088625&rft_dat=%3Cieee_6IE%3E6088625%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457711572&rft.eisbn_list=1457711591&rft.eisbn_list=9781457711596&rft.eisbn_list=1457711575&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6088625&rfr_iscdi=true