Optimal Node Hardware Module Planning for Layer-One Optical Transport Networks
Most of the existing studies on traffic grooming focus on minimizing required network link capacity and providing a serving relationship between client services and link capacity. Subsequent to this step, it is important to plan for actual client service add/drop over client service ports and end-to...
Gespeichert in:
Veröffentlicht in: | Journal of optical communications and networking 2011-12, Vol.3 (12), p.937-946 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 946 |
---|---|
container_issue | 12 |
container_start_page | 937 |
container_title | Journal of optical communications and networking |
container_volume | 3 |
creator | Shen, G. Peng, L. Shen, Y. Sardesai, H. |
description | Most of the existing studies on traffic grooming focus on minimizing required network link capacity and providing a serving relationship between client services and link capacity. Subsequent to this step, it is important to plan for actual client service add/drop over client service ports and end-to-end lightpath establishment over network ports, which is, however, not well investigated. We call such an effort node hardware module planning. This is an industrially practical problem aiming to minimize the node hardware cost since hardware modules are usually the most expensive in a network. Based on a link-based traffic grooming result, we develop a mixed integer linear programming (MILP) model to optimally plan hardware modules. To overcome the computational difficulty of the MILP model under large-size planning scenarios, we also develop a fast suboptimal heuristic for hardware module planning. Simulation studies indicate that the heuristic is efficient to realize a design close to an optimal solution obtained by the MILP model for both of the single-hop and multi-hop grooming modes. Also, the multi-hop grooming mode requires not only fewer link capacity units than the single-hop mode as found in most of the existing studies, but also lower node hardware costs. Finally, the evaluation of the impact of the switch backplane size shows that given a certain set of hardware modules, a saturated switch backplane size exists after which a further increase of the backplane size will not bring further reduction of the network hardware cost. |
doi_str_mv | 10.1364/JOCN.3.000937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6086787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6086787</ieee_id><sourcerecordid>1010882887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-7eced4598551d7991acfd6165d5f7cd1f5431caa2e64df1782aa381a702c68b83</originalsourceid><addsrcrecordid>eNpdkDFPwzAQRi0EEqUwMrFETCwpdpzYzogqoKCSMJTZMvYFpaRxsBNV_fc4CurAdDe877vTQ-ia4AWhLL1_LZfFgi4wxjnlJ2hG8pTGmNH89Lgn-BxdeL_FmHFCshkqyq6vd6qJCmsgWiln9spB9GbN0ED03qi2rduvqLIuWqsDuLhsIRozOmQ2TrW-s66PCuj31n37S3RWqcbD1d-co4-nx81yFa_L55flwzrWlPA-5qDBpFkusowYnudE6cowwjKTVVwbUmUpJVqpBFhqKsJFohQVRHGcaCY-BZ2ju6m3c_ZnAN_LXe01NOFfsIOXBBMsRCIED-jtP3RrB9eG72RO0kSkPBmheIK0s947qGTnghZ3CE1ylCtHuZLKSW7gbya-BoAjy7BgPJz8BZGzdH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914284727</pqid></control><display><type>article</type><title>Optimal Node Hardware Module Planning for Layer-One Optical Transport Networks</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Shen, G. ; Peng, L. ; Shen, Y. ; Sardesai, H.</creator><creatorcontrib>Shen, G. ; Peng, L. ; Shen, Y. ; Sardesai, H.</creatorcontrib><description>Most of the existing studies on traffic grooming focus on minimizing required network link capacity and providing a serving relationship between client services and link capacity. Subsequent to this step, it is important to plan for actual client service add/drop over client service ports and end-to-end lightpath establishment over network ports, which is, however, not well investigated. We call such an effort node hardware module planning. This is an industrially practical problem aiming to minimize the node hardware cost since hardware modules are usually the most expensive in a network. Based on a link-based traffic grooming result, we develop a mixed integer linear programming (MILP) model to optimally plan hardware modules. To overcome the computational difficulty of the MILP model under large-size planning scenarios, we also develop a fast suboptimal heuristic for hardware module planning. Simulation studies indicate that the heuristic is efficient to realize a design close to an optimal solution obtained by the MILP model for both of the single-hop and multi-hop grooming modes. Also, the multi-hop grooming mode requires not only fewer link capacity units than the single-hop mode as found in most of the existing studies, but also lower node hardware costs. Finally, the evaluation of the impact of the switch backplane size shows that given a certain set of hardware modules, a saturated switch backplane size exists after which a further increase of the backplane size will not bring further reduction of the network hardware cost.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.3.000937</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Backplanes ; Client service tree ; Cost engineering ; Hardware ; Hardware module ; Hardware module planning ; Links ; Modules ; Networks ; Optical fiber networks ; Optical switches ; Optimization ; Planning ; Protocols ; Studies ; Switch backplane ; Switching theory</subject><ispartof>Journal of optical communications and networking, 2011-12, Vol.3 (12), p.937-946</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-7eced4598551d7991acfd6165d5f7cd1f5431caa2e64df1782aa381a702c68b83</citedby><cites>FETCH-LOGICAL-c317t-7eced4598551d7991acfd6165d5f7cd1f5431caa2e64df1782aa381a702c68b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6086787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6086787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, G.</creatorcontrib><creatorcontrib>Peng, L.</creatorcontrib><creatorcontrib>Shen, Y.</creatorcontrib><creatorcontrib>Sardesai, H.</creatorcontrib><title>Optimal Node Hardware Module Planning for Layer-One Optical Transport Networks</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>Most of the existing studies on traffic grooming focus on minimizing required network link capacity and providing a serving relationship between client services and link capacity. Subsequent to this step, it is important to plan for actual client service add/drop over client service ports and end-to-end lightpath establishment over network ports, which is, however, not well investigated. We call such an effort node hardware module planning. This is an industrially practical problem aiming to minimize the node hardware cost since hardware modules are usually the most expensive in a network. Based on a link-based traffic grooming result, we develop a mixed integer linear programming (MILP) model to optimally plan hardware modules. To overcome the computational difficulty of the MILP model under large-size planning scenarios, we also develop a fast suboptimal heuristic for hardware module planning. Simulation studies indicate that the heuristic is efficient to realize a design close to an optimal solution obtained by the MILP model for both of the single-hop and multi-hop grooming modes. Also, the multi-hop grooming mode requires not only fewer link capacity units than the single-hop mode as found in most of the existing studies, but also lower node hardware costs. Finally, the evaluation of the impact of the switch backplane size shows that given a certain set of hardware modules, a saturated switch backplane size exists after which a further increase of the backplane size will not bring further reduction of the network hardware cost.</description><subject>Algorithms</subject><subject>Backplanes</subject><subject>Client service tree</subject><subject>Cost engineering</subject><subject>Hardware</subject><subject>Hardware module</subject><subject>Hardware module planning</subject><subject>Links</subject><subject>Modules</subject><subject>Networks</subject><subject>Optical fiber networks</subject><subject>Optical switches</subject><subject>Optimization</subject><subject>Planning</subject><subject>Protocols</subject><subject>Studies</subject><subject>Switch backplane</subject><subject>Switching theory</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQRi0EEqUwMrFETCwpdpzYzogqoKCSMJTZMvYFpaRxsBNV_fc4CurAdDe877vTQ-ia4AWhLL1_LZfFgi4wxjnlJ2hG8pTGmNH89Lgn-BxdeL_FmHFCshkqyq6vd6qJCmsgWiln9spB9GbN0ED03qi2rduvqLIuWqsDuLhsIRozOmQ2TrW-s66PCuj31n37S3RWqcbD1d-co4-nx81yFa_L55flwzrWlPA-5qDBpFkusowYnudE6cowwjKTVVwbUmUpJVqpBFhqKsJFohQVRHGcaCY-BZ2ju6m3c_ZnAN_LXe01NOFfsIOXBBMsRCIED-jtP3RrB9eG72RO0kSkPBmheIK0s947qGTnghZ3CE1ylCtHuZLKSW7gbya-BoAjy7BgPJz8BZGzdH0</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Shen, G.</creator><creator>Peng, L.</creator><creator>Shen, Y.</creator><creator>Sardesai, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201112</creationdate><title>Optimal Node Hardware Module Planning for Layer-One Optical Transport Networks</title><author>Shen, G. ; Peng, L. ; Shen, Y. ; Sardesai, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-7eced4598551d7991acfd6165d5f7cd1f5431caa2e64df1782aa381a702c68b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Backplanes</topic><topic>Client service tree</topic><topic>Cost engineering</topic><topic>Hardware</topic><topic>Hardware module</topic><topic>Hardware module planning</topic><topic>Links</topic><topic>Modules</topic><topic>Networks</topic><topic>Optical fiber networks</topic><topic>Optical switches</topic><topic>Optimization</topic><topic>Planning</topic><topic>Protocols</topic><topic>Studies</topic><topic>Switch backplane</topic><topic>Switching theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, G.</creatorcontrib><creatorcontrib>Peng, L.</creatorcontrib><creatorcontrib>Shen, Y.</creatorcontrib><creatorcontrib>Sardesai, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, G.</au><au>Peng, L.</au><au>Shen, Y.</au><au>Sardesai, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Node Hardware Module Planning for Layer-One Optical Transport Networks</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2011-12</date><risdate>2011</risdate><volume>3</volume><issue>12</issue><spage>937</spage><epage>946</epage><pages>937-946</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>Most of the existing studies on traffic grooming focus on minimizing required network link capacity and providing a serving relationship between client services and link capacity. Subsequent to this step, it is important to plan for actual client service add/drop over client service ports and end-to-end lightpath establishment over network ports, which is, however, not well investigated. We call such an effort node hardware module planning. This is an industrially practical problem aiming to minimize the node hardware cost since hardware modules are usually the most expensive in a network. Based on a link-based traffic grooming result, we develop a mixed integer linear programming (MILP) model to optimally plan hardware modules. To overcome the computational difficulty of the MILP model under large-size planning scenarios, we also develop a fast suboptimal heuristic for hardware module planning. Simulation studies indicate that the heuristic is efficient to realize a design close to an optimal solution obtained by the MILP model for both of the single-hop and multi-hop grooming modes. Also, the multi-hop grooming mode requires not only fewer link capacity units than the single-hop mode as found in most of the existing studies, but also lower node hardware costs. Finally, the evaluation of the impact of the switch backplane size shows that given a certain set of hardware modules, a saturated switch backplane size exists after which a further increase of the backplane size will not bring further reduction of the network hardware cost.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1364/JOCN.3.000937</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1943-0620 |
ispartof | Journal of optical communications and networking, 2011-12, Vol.3 (12), p.937-946 |
issn | 1943-0620 1943-0639 |
language | eng |
recordid | cdi_ieee_primary_6086787 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Algorithms Backplanes Client service tree Cost engineering Hardware Hardware module Hardware module planning Links Modules Networks Optical fiber networks Optical switches Optimization Planning Protocols Studies Switch backplane Switching theory |
title | Optimal Node Hardware Module Planning for Layer-One Optical Transport Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Node%20Hardware%20Module%20Planning%20for%20Layer-One%20Optical%20Transport%20Networks&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Shen,%20G.&rft.date=2011-12&rft.volume=3&rft.issue=12&rft.spage=937&rft.epage=946&rft.pages=937-946&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.3.000937&rft_dat=%3Cproquest_RIE%3E1010882887%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914284727&rft_id=info:pmid/&rft_ieee_id=6086787&rfr_iscdi=true |