Micron: An Actively Stabilized Handheld Tool for Microsurgery
We describe the design and performance of a handheld actively stabilized tool to increase accuracy in microsurgery or other precision manipulation. It removes involuntary motion, such as tremor, by the actuation of the tip to counteract the effect of the undesired handle motion. The key components a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2012-02, Vol.28 (1), p.195-212 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 1 |
container_start_page | 195 |
container_title | IEEE transactions on robotics |
container_volume | 28 |
creator | MacLachlan, Robert A. Becker, Brian C. Tabares, Jaime Cuevas Podnar, Gregg W. Lobes, Louis A. Riviere, Cameron N. |
description | We describe the design and performance of a handheld actively stabilized tool to increase accuracy in microsurgery or other precision manipulation. It removes involuntary motion, such as tremor, by the actuation of the tip to counteract the effect of the undesired handle motion. The key components are a 3-degree-of-freedom (DOF) piezoelectric manipulator that has a 400-μm range of motion, 1-N force capability, and bandwidth over 100 Hz, and an optical position-measurement subsystem that acquires the tool pose with 4-μm resolution at 2000 samples/s. A control system using these components attenuates hand motion by at least 15 dB (a fivefold reduction). By the consideration of the effect of the frequency response of Micron on the human visual feedback loop, we have developed a filter that reduces unintentional motion, yet preserves the intuitive eye-hand coordination. We evaluated the effectiveness of Micron by measuring the accuracy of the human/machine system in three simple manipulation tasks. Handheld testing by three eye surgeons and three nonsurgeons showed a reduction in the position error of between 32% and 52%, depending on the error metric. |
doi_str_mv | 10.1109/TRO.2011.2169634 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6084852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6084852</ieee_id><sourcerecordid>1835483830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-b5bc886d0301ebc4672da4b5594d25264f2b3de8af24ddfeeed178839020fc5d3</originalsourceid><addsrcrecordid>eNpdkd9rFDEQx4Motp6-C4IsgtCXPSc_LxEUjmKtUCno-RyySbZNyW1qsls4_3pzvfO0PiUwnxlmvh-EXmKYYwzq3erb5ZwAxnOChRKUPULHWDHcAhPycf1zTloKSh6hZ6XcABCmgD5FR4QCkUSIY_Tha7A5De-b5dAs7RjufNw030fThRh-edecm8Fd--iaVUqx6VNu7hvKlK983jxHT3oTi3-xf2fox9mn1el5e3H5-cvp8qK1nKqx7XhnpRQOKGDfWSYWxBnWca6YI5wI1pOOOi9NT5hzvffe4YWUVAGB3nJHZ-jjbu7t1K29s34Ys4n6Noe1yRudTNAPK0O41lfpTlPGFa_JzNDJfkBOPydfRr0OxfoYzeDTVDSWlDNJJYWKvvkPvUlTHup5WhGxkAvGcIVgB22zKNn3h10w6K0aXdXorRq9V1NbXv97w6Hhj4sKvN0DplgT-2wGG8pfrsqkBLYLvtpxoQZ1KAuQTFbiN_3cnyc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926787441</pqid></control><display><type>article</type><title>Micron: An Actively Stabilized Handheld Tool for Microsurgery</title><source>IEEE Electronic Library (IEL)</source><creator>MacLachlan, Robert A. ; Becker, Brian C. ; Tabares, Jaime Cuevas ; Podnar, Gregg W. ; Lobes, Louis A. ; Riviere, Cameron N.</creator><creatorcontrib>MacLachlan, Robert A. ; Becker, Brian C. ; Tabares, Jaime Cuevas ; Podnar, Gregg W. ; Lobes, Louis A. ; Riviere, Cameron N.</creatorcontrib><description>We describe the design and performance of a handheld actively stabilized tool to increase accuracy in microsurgery or other precision manipulation. It removes involuntary motion, such as tremor, by the actuation of the tip to counteract the effect of the undesired handle motion. The key components are a 3-degree-of-freedom (DOF) piezoelectric manipulator that has a 400-μm range of motion, 1-N force capability, and bandwidth over 100 Hz, and an optical position-measurement subsystem that acquires the tool pose with 4-μm resolution at 2000 samples/s. A control system using these components attenuates hand motion by at least 15 dB (a fivefold reduction). By the consideration of the effect of the frequency response of Micron on the human visual feedback loop, we have developed a filter that reduces unintentional motion, yet preserves the intuitive eye-hand coordination. We evaluated the effectiveness of Micron by measuring the accuracy of the human/machine system in three simple manipulation tasks. Handheld testing by three eye surgeons and three nonsurgeons showed a reduction in the position error of between 32% and 52%, depending on the error metric.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2011.2169634</identifier><identifier>PMID: 23028266</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Accuracy ; Applied sciences ; Biological and medical sciences ; Compensation ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Force ; Humans ; Manipulation ; Manipulators ; medical robotics ; Medical sciences ; Microsurgery ; Motion control ; optical tracking ; piezoelectric devices ; Robotics ; Robots ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><ispartof>IEEE transactions on robotics, 2012-02, Vol.28 (1), p.195-212</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-b5bc886d0301ebc4672da4b5594d25264f2b3de8af24ddfeeed178839020fc5d3</citedby><cites>FETCH-LOGICAL-c539t-b5bc886d0301ebc4672da4b5594d25264f2b3de8af24ddfeeed178839020fc5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6084852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,794,883,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6084852$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25523200$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23028266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacLachlan, Robert A.</creatorcontrib><creatorcontrib>Becker, Brian C.</creatorcontrib><creatorcontrib>Tabares, Jaime Cuevas</creatorcontrib><creatorcontrib>Podnar, Gregg W.</creatorcontrib><creatorcontrib>Lobes, Louis A.</creatorcontrib><creatorcontrib>Riviere, Cameron N.</creatorcontrib><title>Micron: An Actively Stabilized Handheld Tool for Microsurgery</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><addtitle>IEEE Trans Robot</addtitle><description>We describe the design and performance of a handheld actively stabilized tool to increase accuracy in microsurgery or other precision manipulation. It removes involuntary motion, such as tremor, by the actuation of the tip to counteract the effect of the undesired handle motion. The key components are a 3-degree-of-freedom (DOF) piezoelectric manipulator that has a 400-μm range of motion, 1-N force capability, and bandwidth over 100 Hz, and an optical position-measurement subsystem that acquires the tool pose with 4-μm resolution at 2000 samples/s. A control system using these components attenuates hand motion by at least 15 dB (a fivefold reduction). By the consideration of the effect of the frequency response of Micron on the human visual feedback loop, we have developed a filter that reduces unintentional motion, yet preserves the intuitive eye-hand coordination. We evaluated the effectiveness of Micron by measuring the accuracy of the human/machine system in three simple manipulation tasks. Handheld testing by three eye surgeons and three nonsurgeons showed a reduction in the position error of between 32% and 52%, depending on the error metric.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Compensation</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Force</subject><subject>Humans</subject><subject>Manipulation</subject><subject>Manipulators</subject><subject>medical robotics</subject><subject>Medical sciences</subject><subject>Microsurgery</subject><subject>Motion control</subject><subject>optical tracking</subject><subject>piezoelectric devices</subject><subject>Robotics</subject><subject>Robots</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkd9rFDEQx4Motp6-C4IsgtCXPSc_LxEUjmKtUCno-RyySbZNyW1qsls4_3pzvfO0PiUwnxlmvh-EXmKYYwzq3erb5ZwAxnOChRKUPULHWDHcAhPycf1zTloKSh6hZ6XcABCmgD5FR4QCkUSIY_Tha7A5De-b5dAs7RjufNw030fThRh-edecm8Fd--iaVUqx6VNu7hvKlK983jxHT3oTi3-xf2fox9mn1el5e3H5-cvp8qK1nKqx7XhnpRQOKGDfWSYWxBnWca6YI5wI1pOOOi9NT5hzvffe4YWUVAGB3nJHZ-jjbu7t1K29s34Ys4n6Noe1yRudTNAPK0O41lfpTlPGFa_JzNDJfkBOPydfRr0OxfoYzeDTVDSWlDNJJYWKvvkPvUlTHup5WhGxkAvGcIVgB22zKNn3h10w6K0aXdXorRq9V1NbXv97w6Hhj4sKvN0DplgT-2wGG8pfrsqkBLYLvtpxoQZ1KAuQTFbiN_3cnyc</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>MacLachlan, Robert A.</creator><creator>Becker, Brian C.</creator><creator>Tabares, Jaime Cuevas</creator><creator>Podnar, Gregg W.</creator><creator>Lobes, Louis A.</creator><creator>Riviere, Cameron N.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120201</creationdate><title>Micron: An Actively Stabilized Handheld Tool for Microsurgery</title><author>MacLachlan, Robert A. ; Becker, Brian C. ; Tabares, Jaime Cuevas ; Podnar, Gregg W. ; Lobes, Louis A. ; Riviere, Cameron N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-b5bc886d0301ebc4672da4b5594d25264f2b3de8af24ddfeeed178839020fc5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Compensation</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Force</topic><topic>Humans</topic><topic>Manipulation</topic><topic>Manipulators</topic><topic>medical robotics</topic><topic>Medical sciences</topic><topic>Microsurgery</topic><topic>Motion control</topic><topic>optical tracking</topic><topic>piezoelectric devices</topic><topic>Robotics</topic><topic>Robots</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacLachlan, Robert A.</creatorcontrib><creatorcontrib>Becker, Brian C.</creatorcontrib><creatorcontrib>Tabares, Jaime Cuevas</creatorcontrib><creatorcontrib>Podnar, Gregg W.</creatorcontrib><creatorcontrib>Lobes, Louis A.</creatorcontrib><creatorcontrib>Riviere, Cameron N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MacLachlan, Robert A.</au><au>Becker, Brian C.</au><au>Tabares, Jaime Cuevas</au><au>Podnar, Gregg W.</au><au>Lobes, Louis A.</au><au>Riviere, Cameron N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micron: An Actively Stabilized Handheld Tool for Microsurgery</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><addtitle>IEEE Trans Robot</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>28</volume><issue>1</issue><spage>195</spage><epage>212</epage><pages>195-212</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>We describe the design and performance of a handheld actively stabilized tool to increase accuracy in microsurgery or other precision manipulation. It removes involuntary motion, such as tremor, by the actuation of the tip to counteract the effect of the undesired handle motion. The key components are a 3-degree-of-freedom (DOF) piezoelectric manipulator that has a 400-μm range of motion, 1-N force capability, and bandwidth over 100 Hz, and an optical position-measurement subsystem that acquires the tool pose with 4-μm resolution at 2000 samples/s. A control system using these components attenuates hand motion by at least 15 dB (a fivefold reduction). By the consideration of the effect of the frequency response of Micron on the human visual feedback loop, we have developed a filter that reduces unintentional motion, yet preserves the intuitive eye-hand coordination. We evaluated the effectiveness of Micron by measuring the accuracy of the human/machine system in three simple manipulation tasks. Handheld testing by three eye surgeons and three nonsurgeons showed a reduction in the position error of between 32% and 52%, depending on the error metric.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>23028266</pmid><doi>10.1109/TRO.2011.2169634</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2012-02, Vol.28 (1), p.195-212 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_ieee_primary_6084852 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Accuracy Applied sciences Biological and medical sciences Compensation Computer science control theory systems Control theory. Systems Exact sciences and technology Force Humans Manipulation Manipulators medical robotics Medical sciences Microsurgery Motion control optical tracking piezoelectric devices Robotics Robots Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases |
title | Micron: An Actively Stabilized Handheld Tool for Microsurgery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micron:%20An%20Actively%20Stabilized%20Handheld%20Tool%20for%20Microsurgery&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=MacLachlan,%20Robert%20A.&rft.date=2012-02-01&rft.volume=28&rft.issue=1&rft.spage=195&rft.epage=212&rft.pages=195-212&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2011.2169634&rft_dat=%3Cproquest_RIE%3E1835483830%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926787441&rft_id=info:pmid/23028266&rft_ieee_id=6084852&rfr_iscdi=true |