Lane marking extraction with combination strategy and comparative evaluation on synthetic and camera images

Lane detections and tracking are crucial stages for a great number of Advanced Driving Assistance Systems (ADAS), for instance for road lane following or robust ego localization. In these applications, the most important module is probably the lane marking primitives extraction algorithm. For severa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pollard, Evangeline, Gruyer, Dominique, Tarel, Jean-Philippe, Ieng, Sio-Song, Cord, Aurelien
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1746
container_issue
container_start_page 1741
container_title
container_volume
creator Pollard, Evangeline
Gruyer, Dominique
Tarel, Jean-Philippe
Ieng, Sio-Song
Cord, Aurelien
description Lane detections and tracking are crucial stages for a great number of Advanced Driving Assistance Systems (ADAS), for instance for road lane following or robust ego localization. In these applications, the most important module is probably the lane marking primitives extraction algorithm. For several decades, a lot of approaches have been proposed in order to achieve this task. Unfortunately, it is yet difficult to guarantee robust results from these extraction algorithms in case of bad weather conditions, degraded lane markings, or due to intrinsic limitations of cameras. In this paper we propose an approach in order to improve the quality of the lane marking extraction. By extraction, we mean the classification of the image pixels into two classes: marking and non-marking. The extraction is generally the first step of a marking detection system, so its efficiency has a strong impact on the performances of the whole system. The proposed algorithm is based on the combination of two different extraction algorithms. In order to validate the quality of this work, some tests and evaluations are provided and allow proving the efficiency of such an approach. The evaluation is performed on camera images and then on synthetic images. The results with camera and synthetic images are compared and discussed.
doi_str_mv 10.1109/ITSC.2011.6083036
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6083036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6083036</ieee_id><sourcerecordid>6083036</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8fb1f5a30e55f74ccb1ff476998a619ba590c9ca053e4f55f1da8fc4b81d5f93</originalsourceid><addsrcrecordid>eNpVkM9OAjEQh-u_RII8gPHSF1js0HbbHg1RJNnEg9zJbJlChV3IbkV5exchJp5mfvN9mUmGsXsQQwDhHqez9_FwJACGubBSyPyCDZyxoLQxI3DGXLLeCLTMhABz9Y9Zdf3HhLtlg7b96DqR585K1WPrAmviFTbrWC85facGfYrbmn_FtOJ-W5Wxxt9B26FEywPHenEEO-xy3BOnPW4-T85RO9RpRSn6k4cVNchjhUtq79hNwE1Lg3Pts9nL82z8mhVvk-n4qcgiGJ0yG0oIGqUgrYNR3ncxKJM7ZzEHV6J2wjuPQktSoXNggTZ4VVpY6OBknz2c1kYimu-a7nhzmJ8_J38ALIhgHg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lane marking extraction with combination strategy and comparative evaluation on synthetic and camera images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pollard, Evangeline ; Gruyer, Dominique ; Tarel, Jean-Philippe ; Ieng, Sio-Song ; Cord, Aurelien</creator><creatorcontrib>Pollard, Evangeline ; Gruyer, Dominique ; Tarel, Jean-Philippe ; Ieng, Sio-Song ; Cord, Aurelien</creatorcontrib><description>Lane detections and tracking are crucial stages for a great number of Advanced Driving Assistance Systems (ADAS), for instance for road lane following or robust ego localization. In these applications, the most important module is probably the lane marking primitives extraction algorithm. For several decades, a lot of approaches have been proposed in order to achieve this task. Unfortunately, it is yet difficult to guarantee robust results from these extraction algorithms in case of bad weather conditions, degraded lane markings, or due to intrinsic limitations of cameras. In this paper we propose an approach in order to improve the quality of the lane marking extraction. By extraction, we mean the classification of the image pixels into two classes: marking and non-marking. The extraction is generally the first step of a marking detection system, so its efficiency has a strong impact on the performances of the whole system. The proposed algorithm is based on the combination of two different extraction algorithms. In order to validate the quality of this work, some tests and evaluations are provided and allow proving the efficiency of such an approach. The evaluation is performed on camera images and then on synthetic images. The results with camera and synthetic images are compared and discussed.</description><identifier>ISSN: 2153-0009</identifier><identifier>ISBN: 9781457721984</identifier><identifier>ISBN: 1457721988</identifier><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9781457721977</identifier><identifier>EISBN: 145772197X</identifier><identifier>EISBN: 9781457721960</identifier><identifier>EISBN: 1457721961</identifier><identifier>DOI: 10.1109/ITSC.2011.6083036</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Feature extraction ; Image color analysis ; Lighting ; Roads ; Testing</subject><ispartof>2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2011, p.1741-1746</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6083036$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6083036$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pollard, Evangeline</creatorcontrib><creatorcontrib>Gruyer, Dominique</creatorcontrib><creatorcontrib>Tarel, Jean-Philippe</creatorcontrib><creatorcontrib>Ieng, Sio-Song</creatorcontrib><creatorcontrib>Cord, Aurelien</creatorcontrib><title>Lane marking extraction with combination strategy and comparative evaluation on synthetic and camera images</title><title>2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)</title><addtitle>ITSC</addtitle><description>Lane detections and tracking are crucial stages for a great number of Advanced Driving Assistance Systems (ADAS), for instance for road lane following or robust ego localization. In these applications, the most important module is probably the lane marking primitives extraction algorithm. For several decades, a lot of approaches have been proposed in order to achieve this task. Unfortunately, it is yet difficult to guarantee robust results from these extraction algorithms in case of bad weather conditions, degraded lane markings, or due to intrinsic limitations of cameras. In this paper we propose an approach in order to improve the quality of the lane marking extraction. By extraction, we mean the classification of the image pixels into two classes: marking and non-marking. The extraction is generally the first step of a marking detection system, so its efficiency has a strong impact on the performances of the whole system. The proposed algorithm is based on the combination of two different extraction algorithms. In order to validate the quality of this work, some tests and evaluations are provided and allow proving the efficiency of such an approach. The evaluation is performed on camera images and then on synthetic images. The results with camera and synthetic images are compared and discussed.</description><subject>Cameras</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>Lighting</subject><subject>Roads</subject><subject>Testing</subject><issn>2153-0009</issn><issn>2153-0017</issn><isbn>9781457721984</isbn><isbn>1457721988</isbn><isbn>9781457721977</isbn><isbn>145772197X</isbn><isbn>9781457721960</isbn><isbn>1457721961</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM9OAjEQh-u_RII8gPHSF1js0HbbHg1RJNnEg9zJbJlChV3IbkV5exchJp5mfvN9mUmGsXsQQwDhHqez9_FwJACGubBSyPyCDZyxoLQxI3DGXLLeCLTMhABz9Y9Zdf3HhLtlg7b96DqR585K1WPrAmviFTbrWC85facGfYrbmn_FtOJ-W5Wxxt9B26FEywPHenEEO-xy3BOnPW4-T85RO9RpRSn6k4cVNchjhUtq79hNwE1Lg3Pts9nL82z8mhVvk-n4qcgiGJ0yG0oIGqUgrYNR3ncxKJM7ZzEHV6J2wjuPQktSoXNggTZ4VVpY6OBknz2c1kYimu-a7nhzmJ8_J38ALIhgHg</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Pollard, Evangeline</creator><creator>Gruyer, Dominique</creator><creator>Tarel, Jean-Philippe</creator><creator>Ieng, Sio-Song</creator><creator>Cord, Aurelien</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201110</creationdate><title>Lane marking extraction with combination strategy and comparative evaluation on synthetic and camera images</title><author>Pollard, Evangeline ; Gruyer, Dominique ; Tarel, Jean-Philippe ; Ieng, Sio-Song ; Cord, Aurelien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8fb1f5a30e55f74ccb1ff476998a619ba590c9ca053e4f55f1da8fc4b81d5f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>Lighting</topic><topic>Roads</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Pollard, Evangeline</creatorcontrib><creatorcontrib>Gruyer, Dominique</creatorcontrib><creatorcontrib>Tarel, Jean-Philippe</creatorcontrib><creatorcontrib>Ieng, Sio-Song</creatorcontrib><creatorcontrib>Cord, Aurelien</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pollard, Evangeline</au><au>Gruyer, Dominique</au><au>Tarel, Jean-Philippe</au><au>Ieng, Sio-Song</au><au>Cord, Aurelien</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lane marking extraction with combination strategy and comparative evaluation on synthetic and camera images</atitle><btitle>2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)</btitle><stitle>ITSC</stitle><date>2011-10</date><risdate>2011</risdate><spage>1741</spage><epage>1746</epage><pages>1741-1746</pages><issn>2153-0009</issn><eissn>2153-0017</eissn><isbn>9781457721984</isbn><isbn>1457721988</isbn><eisbn>9781457721977</eisbn><eisbn>145772197X</eisbn><eisbn>9781457721960</eisbn><eisbn>1457721961</eisbn><abstract>Lane detections and tracking are crucial stages for a great number of Advanced Driving Assistance Systems (ADAS), for instance for road lane following or robust ego localization. In these applications, the most important module is probably the lane marking primitives extraction algorithm. For several decades, a lot of approaches have been proposed in order to achieve this task. Unfortunately, it is yet difficult to guarantee robust results from these extraction algorithms in case of bad weather conditions, degraded lane markings, or due to intrinsic limitations of cameras. In this paper we propose an approach in order to improve the quality of the lane marking extraction. By extraction, we mean the classification of the image pixels into two classes: marking and non-marking. The extraction is generally the first step of a marking detection system, so its efficiency has a strong impact on the performances of the whole system. The proposed algorithm is based on the combination of two different extraction algorithms. In order to validate the quality of this work, some tests and evaluations are provided and allow proving the efficiency of such an approach. The evaluation is performed on camera images and then on synthetic images. The results with camera and synthetic images are compared and discussed.</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2011.6083036</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0009
ispartof 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2011, p.1741-1746
issn 2153-0009
2153-0017
language eng
recordid cdi_ieee_primary_6083036
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Feature extraction
Image color analysis
Lighting
Roads
Testing
title Lane marking extraction with combination strategy and comparative evaluation on synthetic and camera images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lane%20marking%20extraction%20with%20combination%20strategy%20and%20comparative%20evaluation%20on%20synthetic%20and%20camera%20images&rft.btitle=2011%2014th%20International%20IEEE%20Conference%20on%20Intelligent%20Transportation%20Systems%20(ITSC)&rft.au=Pollard,%20Evangeline&rft.date=2011-10&rft.spage=1741&rft.epage=1746&rft.pages=1741-1746&rft.issn=2153-0009&rft.eissn=2153-0017&rft.isbn=9781457721984&rft.isbn_list=1457721988&rft_id=info:doi/10.1109/ITSC.2011.6083036&rft_dat=%3Cieee_6IE%3E6083036%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457721977&rft.eisbn_list=145772197X&rft.eisbn_list=9781457721960&rft.eisbn_list=1457721961&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6083036&rfr_iscdi=true