Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm
Due to the high labor cost and measurement difficulties of traditional methods in determination of sedimentary microfacies, principal component analysis (PCA) and back propagation neural network (BPNN) based on genetic algorithm (GA) are employed for the recognition system. PCA can extract the most...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215 |
---|---|
container_issue | |
container_start_page | 211 |
container_title | |
container_volume | 1 |
creator | Junwei Mei Shimi Peng |
description | Due to the high labor cost and measurement difficulties of traditional methods in determination of sedimentary microfacies, principal component analysis (PCA) and back propagation neural network (BPNN) based on genetic algorithm (GA) are employed for the recognition system. PCA can extract the most distinguishing vectors which have been removed noise in the discarded dimensions from the original data and extremely reduce the computational burden. GA can find the optimal weights and biases of the neutral network which will avoid meeting the local optimal value. The experimental results of this identification system show that PCA-GA-BPNN gives superior predictions over ordinary neutral network. More importantly, this method gets rid of the tedious activities, improves efficiency as well as maintains high recognition accuracy and also has significant potential applications in oil exploration and development field. |
doi_str_mv | 10.1109/ISCID.2011.61 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6079673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6079673</ieee_id><sourcerecordid>6079673</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5b0334375c8cf9d5e40ee10063a4419369323d320cbf087afacfd63c871a86b03</originalsourceid><addsrcrecordid>eNotT8tOwzAQtISQgNIjJy7-gRa7Tvw4lgAlUilILefKtTdlIXEqO6jq32MEexlp56EZQm44m3LOzF29ruqH6YxxPpX8jIyN0rwoleJMl_qcXP0yRiguxAUZp_TJ8kmpjTaX5LgGjx2EwcYTfUEX-8Y6hERrn5_YoLMD9oG-Jwx7-hYxODzYllZ9d-hDltB5sO0pYaI2eLqC75jZFQzHPn7Re5vA02xfQIABHZ23-z7i8NFdk_PGtgnG_zgim6fHTfU8Wb4u6mq-nKBhw6TcMSEKoUqnXWN8CQUD4Lm9sEWRN0kjZsKLGXO7hmllc_fGS-G04lbLbB6R279YBIDtIWKXd24lU0YqIX4Arlxdow</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Junwei Mei ; Shimi Peng</creator><creatorcontrib>Junwei Mei ; Shimi Peng</creatorcontrib><description>Due to the high labor cost and measurement difficulties of traditional methods in determination of sedimentary microfacies, principal component analysis (PCA) and back propagation neural network (BPNN) based on genetic algorithm (GA) are employed for the recognition system. PCA can extract the most distinguishing vectors which have been removed noise in the discarded dimensions from the original data and extremely reduce the computational burden. GA can find the optimal weights and biases of the neutral network which will avoid meeting the local optimal value. The experimental results of this identification system show that PCA-GA-BPNN gives superior predictions over ordinary neutral network. More importantly, this method gets rid of the tedious activities, improves efficiency as well as maintains high recognition accuracy and also has significant potential applications in oil exploration and development field.</description><identifier>ISBN: 9781457710858</identifier><identifier>ISBN: 1457710854</identifier><identifier>DOI: 10.1109/ISCID.2011.61</identifier><identifier>LCCN: 2011937133</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; genetic algorithm ; Genetic algorithms ; identification ; Input variables ; neural network ; Neurons ; Presses ; Principal component analysis ; sedimentary microfacies ; Training</subject><ispartof>2011 Fourth International Symposium on Computational Intelligence and Design, 2011, Vol.1, p.211-215</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6079673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6079673$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Junwei Mei</creatorcontrib><creatorcontrib>Shimi Peng</creatorcontrib><title>Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm</title><title>2011 Fourth International Symposium on Computational Intelligence and Design</title><addtitle>iscid</addtitle><description>Due to the high labor cost and measurement difficulties of traditional methods in determination of sedimentary microfacies, principal component analysis (PCA) and back propagation neural network (BPNN) based on genetic algorithm (GA) are employed for the recognition system. PCA can extract the most distinguishing vectors which have been removed noise in the discarded dimensions from the original data and extremely reduce the computational burden. GA can find the optimal weights and biases of the neutral network which will avoid meeting the local optimal value. The experimental results of this identification system show that PCA-GA-BPNN gives superior predictions over ordinary neutral network. More importantly, this method gets rid of the tedious activities, improves efficiency as well as maintains high recognition accuracy and also has significant potential applications in oil exploration and development field.</description><subject>Accuracy</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>identification</subject><subject>Input variables</subject><subject>neural network</subject><subject>Neurons</subject><subject>Presses</subject><subject>Principal component analysis</subject><subject>sedimentary microfacies</subject><subject>Training</subject><isbn>9781457710858</isbn><isbn>1457710854</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT8tOwzAQtISQgNIjJy7-gRa7Tvw4lgAlUilILefKtTdlIXEqO6jq32MEexlp56EZQm44m3LOzF29ruqH6YxxPpX8jIyN0rwoleJMl_qcXP0yRiguxAUZp_TJ8kmpjTaX5LgGjx2EwcYTfUEX-8Y6hERrn5_YoLMD9oG-Jwx7-hYxODzYllZ9d-hDltB5sO0pYaI2eLqC75jZFQzHPn7Re5vA02xfQIABHZ23-z7i8NFdk_PGtgnG_zgim6fHTfU8Wb4u6mq-nKBhw6TcMSEKoUqnXWN8CQUD4Lm9sEWRN0kjZsKLGXO7hmllc_fGS-G04lbLbB6R279YBIDtIWKXd24lU0YqIX4Arlxdow</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Junwei Mei</creator><creator>Shimi Peng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm</title><author>Junwei Mei ; Shimi Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5b0334375c8cf9d5e40ee10063a4419369323d320cbf087afacfd63c871a86b03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>identification</topic><topic>Input variables</topic><topic>neural network</topic><topic>Neurons</topic><topic>Presses</topic><topic>Principal component analysis</topic><topic>sedimentary microfacies</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Junwei Mei</creatorcontrib><creatorcontrib>Shimi Peng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Junwei Mei</au><au>Shimi Peng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm</atitle><btitle>2011 Fourth International Symposium on Computational Intelligence and Design</btitle><stitle>iscid</stitle><date>2011-10</date><risdate>2011</risdate><volume>1</volume><spage>211</spage><epage>215</epage><pages>211-215</pages><isbn>9781457710858</isbn><isbn>1457710854</isbn><abstract>Due to the high labor cost and measurement difficulties of traditional methods in determination of sedimentary microfacies, principal component analysis (PCA) and back propagation neural network (BPNN) based on genetic algorithm (GA) are employed for the recognition system. PCA can extract the most distinguishing vectors which have been removed noise in the discarded dimensions from the original data and extremely reduce the computational burden. GA can find the optimal weights and biases of the neutral network which will avoid meeting the local optimal value. The experimental results of this identification system show that PCA-GA-BPNN gives superior predictions over ordinary neutral network. More importantly, this method gets rid of the tedious activities, improves efficiency as well as maintains high recognition accuracy and also has significant potential applications in oil exploration and development field.</abstract><pub>IEEE</pub><doi>10.1109/ISCID.2011.61</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457710858 |
ispartof | 2011 Fourth International Symposium on Computational Intelligence and Design, 2011, Vol.1, p.211-215 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6079673 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy genetic algorithm Genetic algorithms identification Input variables neural network Neurons Presses Principal component analysis sedimentary microfacies Training |
title | Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sedimentary%20Microfacies%20Identification%20Using%20Principal%20Component%20Analysis%20and%20Neural%20Network%20Based%20on%20Genetic%20Algorithm&rft.btitle=2011%20Fourth%20International%20Symposium%20on%20Computational%20Intelligence%20and%20Design&rft.au=Junwei%20Mei&rft.date=2011-10&rft.volume=1&rft.spage=211&rft.epage=215&rft.pages=211-215&rft.isbn=9781457710858&rft.isbn_list=1457710854&rft_id=info:doi/10.1109/ISCID.2011.61&rft_dat=%3Cieee_6IE%3E6079673%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6079673&rfr_iscdi=true |