Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm

Due to the high labor cost and measurement difficulties of traditional methods in determination of sedimentary microfacies, principal component analysis (PCA) and back propagation neural network (BPNN) based on genetic algorithm (GA) are employed for the recognition system. PCA can extract the most...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Junwei Mei, Shimi Peng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue
container_start_page 211
container_title
container_volume 1
creator Junwei Mei
Shimi Peng
description Due to the high labor cost and measurement difficulties of traditional methods in determination of sedimentary microfacies, principal component analysis (PCA) and back propagation neural network (BPNN) based on genetic algorithm (GA) are employed for the recognition system. PCA can extract the most distinguishing vectors which have been removed noise in the discarded dimensions from the original data and extremely reduce the computational burden. GA can find the optimal weights and biases of the neutral network which will avoid meeting the local optimal value. The experimental results of this identification system show that PCA-GA-BPNN gives superior predictions over ordinary neutral network. More importantly, this method gets rid of the tedious activities, improves efficiency as well as maintains high recognition accuracy and also has significant potential applications in oil exploration and development field.
doi_str_mv 10.1109/ISCID.2011.61
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6079673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6079673</ieee_id><sourcerecordid>6079673</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5b0334375c8cf9d5e40ee10063a4419369323d320cbf087afacfd63c871a86b03</originalsourceid><addsrcrecordid>eNotT8tOwzAQtISQgNIjJy7-gRa7Tvw4lgAlUilILefKtTdlIXEqO6jq32MEexlp56EZQm44m3LOzF29ruqH6YxxPpX8jIyN0rwoleJMl_qcXP0yRiguxAUZp_TJ8kmpjTaX5LgGjx2EwcYTfUEX-8Y6hERrn5_YoLMD9oG-Jwx7-hYxODzYllZ9d-hDltB5sO0pYaI2eLqC75jZFQzHPn7Re5vA02xfQIABHZ23-z7i8NFdk_PGtgnG_zgim6fHTfU8Wb4u6mq-nKBhw6TcMSEKoUqnXWN8CQUD4Lm9sEWRN0kjZsKLGXO7hmllc_fGS-G04lbLbB6R279YBIDtIWKXd24lU0YqIX4Arlxdow</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Junwei Mei ; Shimi Peng</creator><creatorcontrib>Junwei Mei ; Shimi Peng</creatorcontrib><description>Due to the high labor cost and measurement difficulties of traditional methods in determination of sedimentary microfacies, principal component analysis (PCA) and back propagation neural network (BPNN) based on genetic algorithm (GA) are employed for the recognition system. PCA can extract the most distinguishing vectors which have been removed noise in the discarded dimensions from the original data and extremely reduce the computational burden. GA can find the optimal weights and biases of the neutral network which will avoid meeting the local optimal value. The experimental results of this identification system show that PCA-GA-BPNN gives superior predictions over ordinary neutral network. More importantly, this method gets rid of the tedious activities, improves efficiency as well as maintains high recognition accuracy and also has significant potential applications in oil exploration and development field.</description><identifier>ISBN: 9781457710858</identifier><identifier>ISBN: 1457710854</identifier><identifier>DOI: 10.1109/ISCID.2011.61</identifier><identifier>LCCN: 2011937133</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; genetic algorithm ; Genetic algorithms ; identification ; Input variables ; neural network ; Neurons ; Presses ; Principal component analysis ; sedimentary microfacies ; Training</subject><ispartof>2011 Fourth International Symposium on Computational Intelligence and Design, 2011, Vol.1, p.211-215</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6079673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6079673$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Junwei Mei</creatorcontrib><creatorcontrib>Shimi Peng</creatorcontrib><title>Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm</title><title>2011 Fourth International Symposium on Computational Intelligence and Design</title><addtitle>iscid</addtitle><description>Due to the high labor cost and measurement difficulties of traditional methods in determination of sedimentary microfacies, principal component analysis (PCA) and back propagation neural network (BPNN) based on genetic algorithm (GA) are employed for the recognition system. PCA can extract the most distinguishing vectors which have been removed noise in the discarded dimensions from the original data and extremely reduce the computational burden. GA can find the optimal weights and biases of the neutral network which will avoid meeting the local optimal value. The experimental results of this identification system show that PCA-GA-BPNN gives superior predictions over ordinary neutral network. More importantly, this method gets rid of the tedious activities, improves efficiency as well as maintains high recognition accuracy and also has significant potential applications in oil exploration and development field.</description><subject>Accuracy</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>identification</subject><subject>Input variables</subject><subject>neural network</subject><subject>Neurons</subject><subject>Presses</subject><subject>Principal component analysis</subject><subject>sedimentary microfacies</subject><subject>Training</subject><isbn>9781457710858</isbn><isbn>1457710854</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT8tOwzAQtISQgNIjJy7-gRa7Tvw4lgAlUilILefKtTdlIXEqO6jq32MEexlp56EZQm44m3LOzF29ruqH6YxxPpX8jIyN0rwoleJMl_qcXP0yRiguxAUZp_TJ8kmpjTaX5LgGjx2EwcYTfUEX-8Y6hERrn5_YoLMD9oG-Jwx7-hYxODzYllZ9d-hDltB5sO0pYaI2eLqC75jZFQzHPn7Re5vA02xfQIABHZ23-z7i8NFdk_PGtgnG_zgim6fHTfU8Wb4u6mq-nKBhw6TcMSEKoUqnXWN8CQUD4Lm9sEWRN0kjZsKLGXO7hmllc_fGS-G04lbLbB6R279YBIDtIWKXd24lU0YqIX4Arlxdow</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Junwei Mei</creator><creator>Shimi Peng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm</title><author>Junwei Mei ; Shimi Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5b0334375c8cf9d5e40ee10063a4419369323d320cbf087afacfd63c871a86b03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>identification</topic><topic>Input variables</topic><topic>neural network</topic><topic>Neurons</topic><topic>Presses</topic><topic>Principal component analysis</topic><topic>sedimentary microfacies</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Junwei Mei</creatorcontrib><creatorcontrib>Shimi Peng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Junwei Mei</au><au>Shimi Peng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm</atitle><btitle>2011 Fourth International Symposium on Computational Intelligence and Design</btitle><stitle>iscid</stitle><date>2011-10</date><risdate>2011</risdate><volume>1</volume><spage>211</spage><epage>215</epage><pages>211-215</pages><isbn>9781457710858</isbn><isbn>1457710854</isbn><abstract>Due to the high labor cost and measurement difficulties of traditional methods in determination of sedimentary microfacies, principal component analysis (PCA) and back propagation neural network (BPNN) based on genetic algorithm (GA) are employed for the recognition system. PCA can extract the most distinguishing vectors which have been removed noise in the discarded dimensions from the original data and extremely reduce the computational burden. GA can find the optimal weights and biases of the neutral network which will avoid meeting the local optimal value. The experimental results of this identification system show that PCA-GA-BPNN gives superior predictions over ordinary neutral network. More importantly, this method gets rid of the tedious activities, improves efficiency as well as maintains high recognition accuracy and also has significant potential applications in oil exploration and development field.</abstract><pub>IEEE</pub><doi>10.1109/ISCID.2011.61</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457710858
ispartof 2011 Fourth International Symposium on Computational Intelligence and Design, 2011, Vol.1, p.211-215
issn
language eng
recordid cdi_ieee_primary_6079673
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
genetic algorithm
Genetic algorithms
identification
Input variables
neural network
Neurons
Presses
Principal component analysis
sedimentary microfacies
Training
title Sedimentary Microfacies Identification Using Principal Component Analysis and Neural Network Based on Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sedimentary%20Microfacies%20Identification%20Using%20Principal%20Component%20Analysis%20and%20Neural%20Network%20Based%20on%20Genetic%20Algorithm&rft.btitle=2011%20Fourth%20International%20Symposium%20on%20Computational%20Intelligence%20and%20Design&rft.au=Junwei%20Mei&rft.date=2011-10&rft.volume=1&rft.spage=211&rft.epage=215&rft.pages=211-215&rft.isbn=9781457710858&rft.isbn_list=1457710854&rft_id=info:doi/10.1109/ISCID.2011.61&rft_dat=%3Cieee_6IE%3E6079673%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6079673&rfr_iscdi=true