32 and 45 nm Radiation-Hardened-by-Design (RHBD) SOI Latches

Single event upset (SEU) experimental heavy ion data and modeling results for CMOS, silicon-on-insulator (SOI), 32 nm and 45 nm stacked and DICE latches are presented. Novel data analysis is shown to be important for hardness assurance where Monte Carlo modeling with a realistic heavy ion track stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2011-12, Vol.58 (6), p.2702-2710
Hauptverfasser: Rodbell, K. P., Heidel, D. F., Pellish, J. A., Marshall, P. W., Tang, H. H. K., Murray, C. E., LaBel, K. A., Gordon, M. S., Stawiasz, K. G., Schwank, J. R., Berg, M. D., Kim, H. S., Friendlich, M. R., Phan, A. M., Seidleck, C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2710
container_issue 6
container_start_page 2702
container_title IEEE transactions on nuclear science
container_volume 58
creator Rodbell, K. P.
Heidel, D. F.
Pellish, J. A.
Marshall, P. W.
Tang, H. H. K.
Murray, C. E.
LaBel, K. A.
Gordon, M. S.
Stawiasz, K. G.
Schwank, J. R.
Berg, M. D.
Kim, H. S.
Friendlich, M. R.
Phan, A. M.
Seidleck, C. M.
description Single event upset (SEU) experimental heavy ion data and modeling results for CMOS, silicon-on-insulator (SOI), 32 nm and 45 nm stacked and DICE latches are presented. Novel data analysis is shown to be important for hardness assurance where Monte Carlo modeling with a realistic heavy ion track structure, along with a new visualization aid (the Angular Dependent Cross-section Distribution, ADCD), allows one to quickly assess the improvements, or limitations, of a particular latch design. It was found to be an effective technique for making SEU predictions for alternative 32 nm SOI latch layouts.
doi_str_mv 10.1109/TNS.2011.2171715
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6078448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6078448</ieee_id><sourcerecordid>1010884442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-a9e5bda80e625c1482bdf54169f2d04a3d9b36bda217cd17e2a00c18078efaa43</originalsourceid><addsrcrecordid>eNpdkMFLwzAUh4MoOKd3wUvxNA-ZeWnSJuBFN3WD4WCb55A2r9rRtbPpDvvvzdjwIO_wePD9Hj8-Qm6BDQGYflx9LIecAQw5pGHkGemBlIqCTNU56TEGimqh9SW58n4dTiGZ7JGnmEe2dpGQUb2JFtaVtiubmk5s67BGR7M9HaMvv-posJi8jB-i5XwazWyXf6O_JheFrTzenHaffL69rkYTOpu_T0fPM5rHSnfUapSZs4phwmUOQvHMFVJAogvumLCx01mcBCJUzx2kyC1jOSiWKiysFXGfDI5_t23zs0PfmU3pc6wqW2Oz8wYYMKWEEDyg9__QdbNr69DOaBAilSJNAsSOUN423rdYmG1bbmy7D5_MwaYJNs3BpjnZDJG7Y6RExD88CRWFUPEvKzxsUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914475476</pqid></control><display><type>article</type><title>32 and 45 nm Radiation-Hardened-by-Design (RHBD) SOI Latches</title><source>IEEE Electronic Library (IEL)</source><creator>Rodbell, K. P. ; Heidel, D. F. ; Pellish, J. A. ; Marshall, P. W. ; Tang, H. H. K. ; Murray, C. E. ; LaBel, K. A. ; Gordon, M. S. ; Stawiasz, K. G. ; Schwank, J. R. ; Berg, M. D. ; Kim, H. S. ; Friendlich, M. R. ; Phan, A. M. ; Seidleck, C. M.</creator><creatorcontrib>Rodbell, K. P. ; Heidel, D. F. ; Pellish, J. A. ; Marshall, P. W. ; Tang, H. H. K. ; Murray, C. E. ; LaBel, K. A. ; Gordon, M. S. ; Stawiasz, K. G. ; Schwank, J. R. ; Berg, M. D. ; Kim, H. S. ; Friendlich, M. R. ; Phan, A. M. ; Seidleck, C. M.</creatorcontrib><description>Single event upset (SEU) experimental heavy ion data and modeling results for CMOS, silicon-on-insulator (SOI), 32 nm and 45 nm stacked and DICE latches are presented. Novel data analysis is shown to be important for hardness assurance where Monte Carlo modeling with a realistic heavy ion track structure, along with a new visualization aid (the Angular Dependent Cross-section Distribution, ADCD), allows one to quickly assess the improvements, or limitations, of a particular latch design. It was found to be an effective technique for making SEU predictions for alternative 32 nm SOI latch layouts.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2011.2171715</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>32 nm and 45 nm SOI hardened latches ; angle dependent cross-section distributions ; CMOS ; Computer simulation ; Cross sections ; Data processing ; heavy ion modeling ; Latches ; Mathematical models ; Monte Carlo methods ; Protons ; Radiation hardening ; sensitive node separation ; Silicon on insulator technology ; silicon-on-insulator technology (SOI) ; single event effects (SEE) ; Single event upset ; single event upset (SEU) ; Single event upsets ; track structures</subject><ispartof>IEEE transactions on nuclear science, 2011-12, Vol.58 (6), p.2702-2710</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-a9e5bda80e625c1482bdf54169f2d04a3d9b36bda217cd17e2a00c18078efaa43</citedby><cites>FETCH-LOGICAL-c389t-a9e5bda80e625c1482bdf54169f2d04a3d9b36bda217cd17e2a00c18078efaa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6078448$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6078448$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rodbell, K. P.</creatorcontrib><creatorcontrib>Heidel, D. F.</creatorcontrib><creatorcontrib>Pellish, J. A.</creatorcontrib><creatorcontrib>Marshall, P. W.</creatorcontrib><creatorcontrib>Tang, H. H. K.</creatorcontrib><creatorcontrib>Murray, C. E.</creatorcontrib><creatorcontrib>LaBel, K. A.</creatorcontrib><creatorcontrib>Gordon, M. S.</creatorcontrib><creatorcontrib>Stawiasz, K. G.</creatorcontrib><creatorcontrib>Schwank, J. R.</creatorcontrib><creatorcontrib>Berg, M. D.</creatorcontrib><creatorcontrib>Kim, H. S.</creatorcontrib><creatorcontrib>Friendlich, M. R.</creatorcontrib><creatorcontrib>Phan, A. M.</creatorcontrib><creatorcontrib>Seidleck, C. M.</creatorcontrib><title>32 and 45 nm Radiation-Hardened-by-Design (RHBD) SOI Latches</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Single event upset (SEU) experimental heavy ion data and modeling results for CMOS, silicon-on-insulator (SOI), 32 nm and 45 nm stacked and DICE latches are presented. Novel data analysis is shown to be important for hardness assurance where Monte Carlo modeling with a realistic heavy ion track structure, along with a new visualization aid (the Angular Dependent Cross-section Distribution, ADCD), allows one to quickly assess the improvements, or limitations, of a particular latch design. It was found to be an effective technique for making SEU predictions for alternative 32 nm SOI latch layouts.</description><subject>32 nm and 45 nm SOI hardened latches</subject><subject>angle dependent cross-section distributions</subject><subject>CMOS</subject><subject>Computer simulation</subject><subject>Cross sections</subject><subject>Data processing</subject><subject>heavy ion modeling</subject><subject>Latches</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Protons</subject><subject>Radiation hardening</subject><subject>sensitive node separation</subject><subject>Silicon on insulator technology</subject><subject>silicon-on-insulator technology (SOI)</subject><subject>single event effects (SEE)</subject><subject>Single event upset</subject><subject>single event upset (SEU)</subject><subject>Single event upsets</subject><subject>track structures</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFLwzAUh4MoOKd3wUvxNA-ZeWnSJuBFN3WD4WCb55A2r9rRtbPpDvvvzdjwIO_wePD9Hj8-Qm6BDQGYflx9LIecAQw5pGHkGemBlIqCTNU56TEGimqh9SW58n4dTiGZ7JGnmEe2dpGQUb2JFtaVtiubmk5s67BGR7M9HaMvv-posJi8jB-i5XwazWyXf6O_JheFrTzenHaffL69rkYTOpu_T0fPM5rHSnfUapSZs4phwmUOQvHMFVJAogvumLCx01mcBCJUzx2kyC1jOSiWKiysFXGfDI5_t23zs0PfmU3pc6wqW2Oz8wYYMKWEEDyg9__QdbNr69DOaBAilSJNAsSOUN423rdYmG1bbmy7D5_MwaYJNs3BpjnZDJG7Y6RExD88CRWFUPEvKzxsUQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Rodbell, K. P.</creator><creator>Heidel, D. F.</creator><creator>Pellish, J. A.</creator><creator>Marshall, P. W.</creator><creator>Tang, H. H. K.</creator><creator>Murray, C. E.</creator><creator>LaBel, K. A.</creator><creator>Gordon, M. S.</creator><creator>Stawiasz, K. G.</creator><creator>Schwank, J. R.</creator><creator>Berg, M. D.</creator><creator>Kim, H. S.</creator><creator>Friendlich, M. R.</creator><creator>Phan, A. M.</creator><creator>Seidleck, C. M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201112</creationdate><title>32 and 45 nm Radiation-Hardened-by-Design (RHBD) SOI Latches</title><author>Rodbell, K. P. ; Heidel, D. F. ; Pellish, J. A. ; Marshall, P. W. ; Tang, H. H. K. ; Murray, C. E. ; LaBel, K. A. ; Gordon, M. S. ; Stawiasz, K. G. ; Schwank, J. R. ; Berg, M. D. ; Kim, H. S. ; Friendlich, M. R. ; Phan, A. M. ; Seidleck, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-a9e5bda80e625c1482bdf54169f2d04a3d9b36bda217cd17e2a00c18078efaa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>32 nm and 45 nm SOI hardened latches</topic><topic>angle dependent cross-section distributions</topic><topic>CMOS</topic><topic>Computer simulation</topic><topic>Cross sections</topic><topic>Data processing</topic><topic>heavy ion modeling</topic><topic>Latches</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Protons</topic><topic>Radiation hardening</topic><topic>sensitive node separation</topic><topic>Silicon on insulator technology</topic><topic>silicon-on-insulator technology (SOI)</topic><topic>single event effects (SEE)</topic><topic>Single event upset</topic><topic>single event upset (SEU)</topic><topic>Single event upsets</topic><topic>track structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodbell, K. P.</creatorcontrib><creatorcontrib>Heidel, D. F.</creatorcontrib><creatorcontrib>Pellish, J. A.</creatorcontrib><creatorcontrib>Marshall, P. W.</creatorcontrib><creatorcontrib>Tang, H. H. K.</creatorcontrib><creatorcontrib>Murray, C. E.</creatorcontrib><creatorcontrib>LaBel, K. A.</creatorcontrib><creatorcontrib>Gordon, M. S.</creatorcontrib><creatorcontrib>Stawiasz, K. G.</creatorcontrib><creatorcontrib>Schwank, J. R.</creatorcontrib><creatorcontrib>Berg, M. D.</creatorcontrib><creatorcontrib>Kim, H. S.</creatorcontrib><creatorcontrib>Friendlich, M. R.</creatorcontrib><creatorcontrib>Phan, A. M.</creatorcontrib><creatorcontrib>Seidleck, C. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rodbell, K. P.</au><au>Heidel, D. F.</au><au>Pellish, J. A.</au><au>Marshall, P. W.</au><au>Tang, H. H. K.</au><au>Murray, C. E.</au><au>LaBel, K. A.</au><au>Gordon, M. S.</au><au>Stawiasz, K. G.</au><au>Schwank, J. R.</au><au>Berg, M. D.</au><au>Kim, H. S.</au><au>Friendlich, M. R.</au><au>Phan, A. M.</au><au>Seidleck, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>32 and 45 nm Radiation-Hardened-by-Design (RHBD) SOI Latches</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2011-12</date><risdate>2011</risdate><volume>58</volume><issue>6</issue><spage>2702</spage><epage>2710</epage><pages>2702-2710</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Single event upset (SEU) experimental heavy ion data and modeling results for CMOS, silicon-on-insulator (SOI), 32 nm and 45 nm stacked and DICE latches are presented. Novel data analysis is shown to be important for hardness assurance where Monte Carlo modeling with a realistic heavy ion track structure, along with a new visualization aid (the Angular Dependent Cross-section Distribution, ADCD), allows one to quickly assess the improvements, or limitations, of a particular latch design. It was found to be an effective technique for making SEU predictions for alternative 32 nm SOI latch layouts.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2011.2171715</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2011-12, Vol.58 (6), p.2702-2710
issn 0018-9499
1558-1578
language eng
recordid cdi_ieee_primary_6078448
source IEEE Electronic Library (IEL)
subjects 32 nm and 45 nm SOI hardened latches
angle dependent cross-section distributions
CMOS
Computer simulation
Cross sections
Data processing
heavy ion modeling
Latches
Mathematical models
Monte Carlo methods
Protons
Radiation hardening
sensitive node separation
Silicon on insulator technology
silicon-on-insulator technology (SOI)
single event effects (SEE)
Single event upset
single event upset (SEU)
Single event upsets
track structures
title 32 and 45 nm Radiation-Hardened-by-Design (RHBD) SOI Latches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=32%20and%2045%20nm%20Radiation-Hardened-by-Design%20(RHBD)%20SOI%20Latches&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Rodbell,%20K.%20P.&rft.date=2011-12&rft.volume=58&rft.issue=6&rft.spage=2702&rft.epage=2710&rft.pages=2702-2710&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2011.2171715&rft_dat=%3Cproquest_RIE%3E1010884442%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914475476&rft_id=info:pmid/&rft_ieee_id=6078448&rfr_iscdi=true