A bezier curve approximation of the speech signal in the classification process of laryngopathies

The research concerns a computer-based clinical decision support for laryngopathies. The classification process is based on a speech signal analysis in the time domain using recurrent neural networks. In our experiments, we use the modified Elman-Jordan neural network. In the preprocessing step, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Szkola, J., Pancerz, K., Warchol, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue
container_start_page 141
container_title
container_volume
creator Szkola, J.
Pancerz, K.
Warchol, J.
description The research concerns a computer-based clinical decision support for laryngopathies. The classification process is based on a speech signal analysis in the time domain using recurrent neural networks. In our experiments, we use the modified Elman-Jordan neural network. In the preprocessing step, an original signal is approximated using Bezier curves and next the neural network is trained. Bezier curve approximation reduces the amount of data to be learned as well as removes a noise from the original signal.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6078257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6078257</ieee_id><sourcerecordid>6078257</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d33d12f180f4ba66b2cecd7fcafe964e8d7affea74683a258a152fa219adbb533</originalsourceid><addsrcrecordid>eNotT81qwzAY8xiDjS5PsItfIOB_O8dS9geFXXovn53PjUeWBDsba5--WTtdhIQk0A2pGuucNMxxJrW6vWiutLWMKa7vSVXKJ1tgjGukfCCwph5PCTMN3_kHKUxTHn_TF8xpHOgY6dwhLRNi6GhJhwF6moaLGXooJcUUrtGlFrCUv0oP-TgcxgnmLmF5JHcR-oLVP6_I7uV5t3mrtx-v75v1tk4Nm-tWypaLyB2LyoMxXgQMrY0BIjZGoWstxIhglXEShHbAtYggeAOt91rKFXm6ziZE3E95uZCPe8OsE9rKM8_4U5I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A bezier curve approximation of the speech signal in the classification process of laryngopathies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Szkola, J. ; Pancerz, K. ; Warchol, J.</creator><creatorcontrib>Szkola, J. ; Pancerz, K. ; Warchol, J.</creatorcontrib><description>The research concerns a computer-based clinical decision support for laryngopathies. The classification process is based on a speech signal analysis in the time domain using recurrent neural networks. In our experiments, we use the modified Elman-Jordan neural network. In the preprocessing step, an original signal is approximated using Bezier curves and next the neural network is trained. Bezier curve approximation reduces the amount of data to be learned as well as removes a noise from the original signal.</description><identifier>ISBN: 9781457700415</identifier><identifier>ISBN: 1457700417</identifier><identifier>EISBN: 9788360810354</identifier><identifier>EISBN: 8360810397</identifier><identifier>EISBN: 8360810354</identifier><identifier>EISBN: 9788360810392</identifier><language>eng</language><publisher>IEEE</publisher><subject>approximation ; Approximation algorithms ; Approximation methods ; Bezier curves ; computer-based clinical decision support ; Diseases ; laryngopathies ; Larynx ; Recurrent neural networks ; Speech ; Vectors</subject><ispartof>2011 Federated Conference on Computer Science and Information Systems (FedCSIS), 2011, p.141-146</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6078257$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6078257$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Szkola, J.</creatorcontrib><creatorcontrib>Pancerz, K.</creatorcontrib><creatorcontrib>Warchol, J.</creatorcontrib><title>A bezier curve approximation of the speech signal in the classification process of laryngopathies</title><title>2011 Federated Conference on Computer Science and Information Systems (FedCSIS)</title><addtitle>FedCSIS</addtitle><description>The research concerns a computer-based clinical decision support for laryngopathies. The classification process is based on a speech signal analysis in the time domain using recurrent neural networks. In our experiments, we use the modified Elman-Jordan neural network. In the preprocessing step, an original signal is approximated using Bezier curves and next the neural network is trained. Bezier curve approximation reduces the amount of data to be learned as well as removes a noise from the original signal.</description><subject>approximation</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Bezier curves</subject><subject>computer-based clinical decision support</subject><subject>Diseases</subject><subject>laryngopathies</subject><subject>Larynx</subject><subject>Recurrent neural networks</subject><subject>Speech</subject><subject>Vectors</subject><isbn>9781457700415</isbn><isbn>1457700417</isbn><isbn>9788360810354</isbn><isbn>8360810397</isbn><isbn>8360810354</isbn><isbn>9788360810392</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT81qwzAY8xiDjS5PsItfIOB_O8dS9geFXXovn53PjUeWBDsba5--WTtdhIQk0A2pGuucNMxxJrW6vWiutLWMKa7vSVXKJ1tgjGukfCCwph5PCTMN3_kHKUxTHn_TF8xpHOgY6dwhLRNi6GhJhwF6moaLGXooJcUUrtGlFrCUv0oP-TgcxgnmLmF5JHcR-oLVP6_I7uV5t3mrtx-v75v1tk4Nm-tWypaLyB2LyoMxXgQMrY0BIjZGoWstxIhglXEShHbAtYggeAOt91rKFXm6ziZE3E95uZCPe8OsE9rKM8_4U5I</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Szkola, J.</creator><creator>Pancerz, K.</creator><creator>Warchol, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>A bezier curve approximation of the speech signal in the classification process of laryngopathies</title><author>Szkola, J. ; Pancerz, K. ; Warchol, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d33d12f180f4ba66b2cecd7fcafe964e8d7affea74683a258a152fa219adbb533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>approximation</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Bezier curves</topic><topic>computer-based clinical decision support</topic><topic>Diseases</topic><topic>laryngopathies</topic><topic>Larynx</topic><topic>Recurrent neural networks</topic><topic>Speech</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Szkola, J.</creatorcontrib><creatorcontrib>Pancerz, K.</creatorcontrib><creatorcontrib>Warchol, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Szkola, J.</au><au>Pancerz, K.</au><au>Warchol, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A bezier curve approximation of the speech signal in the classification process of laryngopathies</atitle><btitle>2011 Federated Conference on Computer Science and Information Systems (FedCSIS)</btitle><stitle>FedCSIS</stitle><date>2011-09</date><risdate>2011</risdate><spage>141</spage><epage>146</epage><pages>141-146</pages><isbn>9781457700415</isbn><isbn>1457700417</isbn><eisbn>9788360810354</eisbn><eisbn>8360810397</eisbn><eisbn>8360810354</eisbn><eisbn>9788360810392</eisbn><abstract>The research concerns a computer-based clinical decision support for laryngopathies. The classification process is based on a speech signal analysis in the time domain using recurrent neural networks. In our experiments, we use the modified Elman-Jordan neural network. In the preprocessing step, an original signal is approximated using Bezier curves and next the neural network is trained. Bezier curve approximation reduces the amount of data to be learned as well as removes a noise from the original signal.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457700415
ispartof 2011 Federated Conference on Computer Science and Information Systems (FedCSIS), 2011, p.141-146
issn
language eng
recordid cdi_ieee_primary_6078257
source IEEE Electronic Library (IEL) Conference Proceedings
subjects approximation
Approximation algorithms
Approximation methods
Bezier curves
computer-based clinical decision support
Diseases
laryngopathies
Larynx
Recurrent neural networks
Speech
Vectors
title A bezier curve approximation of the speech signal in the classification process of laryngopathies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20bezier%20curve%20approximation%20of%20the%20speech%20signal%20in%20the%20classification%20process%20of%20laryngopathies&rft.btitle=2011%20Federated%20Conference%20on%20Computer%20Science%20and%20Information%20Systems%20(FedCSIS)&rft.au=Szkola,%20J.&rft.date=2011-09&rft.spage=141&rft.epage=146&rft.pages=141-146&rft.isbn=9781457700415&rft.isbn_list=1457700417&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6078257%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9788360810354&rft.eisbn_list=8360810397&rft.eisbn_list=8360810354&rft.eisbn_list=9788360810392&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6078257&rfr_iscdi=true