Optimal design of gas turbine-solid oxide fuel cell hybrid plant

In the present study, a hybrid solid oxide fuel cell-gas turbine power plant consisting of a compressor, SOFC stack, heat exchangers, combustor and turbines is considered. Individual models are developed for each component through applications of the first law of thermodynamics and the corresponding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hoseinpoori, P., Najafi, H., Najafi, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue
container_start_page 29
container_title
container_volume
creator Hoseinpoori, P.
Najafi, H.
Najafi, B.
description In the present study, a hybrid solid oxide fuel cell-gas turbine power plant consisting of a compressor, SOFC stack, heat exchangers, combustor and turbines is considered. Individual models are developed for each component through applications of the first law of thermodynamics and the corresponding cost of each component is also presented. Two objective functions including the total thermal efficiency of the system and the capital cost of the plant are defined. Since any effort to decrease the total cost of the plant leads to a less efficient system, the considered objective functions are conflicting. Therefore, multi-objective optimization using genetic algorithm is utilized in order to achieve a set of optimal solutions, each of which is a trade-off between objective functions. The main advantage of this work is providing a wide range of optimal results each of which can be selected by the designer considering available investment and the required efficiency of the system.
doi_str_mv 10.1109/EPEC.2011.6070215
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6070215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6070215</ieee_id><sourcerecordid>6070215</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9257f9a18fcdb67d68d9f964d74a8c6ed8b4ddf9a6708014e523cd13f4412f063</originalsourceid><addsrcrecordid>eNo1T81qwzAY8xiFbV0eYOziF0j2fbHjn9tGyH6g0B16L05stx5eEuIU1rdfYJ0uQkIIiZAHhAIR9FPz2dRFCYiFAAklVlck01Ihr6QEDgyvyd2_qMQNyVL6ggVCaNTsljxvxzl8m0itS-HQ08HTg0l0Pk1t6F2ehhgsHX6CddSfXKSdi5Eez-202GM0_XxPVt7E5LILr8nutdnV7_lm-_ZRv2zyoGHOdVlJrw0q39lWSCuU1V4LbiU3qhPOqpZbuySEBAXIXVWyziLznGPpQbA1efyrDc65_Tgtm6fz_vKZ_QJJzknX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal design of gas turbine-solid oxide fuel cell hybrid plant</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hoseinpoori, P. ; Najafi, H. ; Najafi, B.</creator><creatorcontrib>Hoseinpoori, P. ; Najafi, H. ; Najafi, B.</creatorcontrib><description>In the present study, a hybrid solid oxide fuel cell-gas turbine power plant consisting of a compressor, SOFC stack, heat exchangers, combustor and turbines is considered. Individual models are developed for each component through applications of the first law of thermodynamics and the corresponding cost of each component is also presented. Two objective functions including the total thermal efficiency of the system and the capital cost of the plant are defined. Since any effort to decrease the total cost of the plant leads to a less efficient system, the considered objective functions are conflicting. Therefore, multi-objective optimization using genetic algorithm is utilized in order to achieve a set of optimal solutions, each of which is a trade-off between objective functions. The main advantage of this work is providing a wide range of optimal results each of which can be selected by the designer considering available investment and the required efficiency of the system.</description><identifier>ISBN: 1457704056</identifier><identifier>ISBN: 9781457704055</identifier><identifier>EISBN: 9781457704031</identifier><identifier>EISBN: 145770403X</identifier><identifier>EISBN: 9781457704048</identifier><identifier>EISBN: 1457704048</identifier><identifier>DOI: 10.1109/EPEC.2011.6070215</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Fuels ; gas turbine ; genetic algorithm ; Genetic algorithms ; Mathematical model ; multi-objective optimization ; Optimization ; Power generation ; solid oxide fuel cell ; Thermodynamics ; Turbines</subject><ispartof>2011 IEEE Electrical Power and Energy Conference, 2011, p.29-34</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6070215$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6070215$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoseinpoori, P.</creatorcontrib><creatorcontrib>Najafi, H.</creatorcontrib><creatorcontrib>Najafi, B.</creatorcontrib><title>Optimal design of gas turbine-solid oxide fuel cell hybrid plant</title><title>2011 IEEE Electrical Power and Energy Conference</title><addtitle>EPEC</addtitle><description>In the present study, a hybrid solid oxide fuel cell-gas turbine power plant consisting of a compressor, SOFC stack, heat exchangers, combustor and turbines is considered. Individual models are developed for each component through applications of the first law of thermodynamics and the corresponding cost of each component is also presented. Two objective functions including the total thermal efficiency of the system and the capital cost of the plant are defined. Since any effort to decrease the total cost of the plant leads to a less efficient system, the considered objective functions are conflicting. Therefore, multi-objective optimization using genetic algorithm is utilized in order to achieve a set of optimal solutions, each of which is a trade-off between objective functions. The main advantage of this work is providing a wide range of optimal results each of which can be selected by the designer considering available investment and the required efficiency of the system.</description><subject>Equations</subject><subject>Fuels</subject><subject>gas turbine</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Mathematical model</subject><subject>multi-objective optimization</subject><subject>Optimization</subject><subject>Power generation</subject><subject>solid oxide fuel cell</subject><subject>Thermodynamics</subject><subject>Turbines</subject><isbn>1457704056</isbn><isbn>9781457704055</isbn><isbn>9781457704031</isbn><isbn>145770403X</isbn><isbn>9781457704048</isbn><isbn>1457704048</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T81qwzAY8xiFbV0eYOziF0j2fbHjn9tGyH6g0B16L05stx5eEuIU1rdfYJ0uQkIIiZAHhAIR9FPz2dRFCYiFAAklVlck01Ihr6QEDgyvyd2_qMQNyVL6ggVCaNTsljxvxzl8m0itS-HQ08HTg0l0Pk1t6F2ehhgsHX6CddSfXKSdi5Eez-202GM0_XxPVt7E5LILr8nutdnV7_lm-_ZRv2zyoGHOdVlJrw0q39lWSCuU1V4LbiU3qhPOqpZbuySEBAXIXVWyziLznGPpQbA1efyrDc65_Tgtm6fz_vKZ_QJJzknX</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Hoseinpoori, P.</creator><creator>Najafi, H.</creator><creator>Najafi, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Optimal design of gas turbine-solid oxide fuel cell hybrid plant</title><author>Hoseinpoori, P. ; Najafi, H. ; Najafi, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9257f9a18fcdb67d68d9f964d74a8c6ed8b4ddf9a6708014e523cd13f4412f063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Equations</topic><topic>Fuels</topic><topic>gas turbine</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Mathematical model</topic><topic>multi-objective optimization</topic><topic>Optimization</topic><topic>Power generation</topic><topic>solid oxide fuel cell</topic><topic>Thermodynamics</topic><topic>Turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoseinpoori, P.</creatorcontrib><creatorcontrib>Najafi, H.</creatorcontrib><creatorcontrib>Najafi, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoseinpoori, P.</au><au>Najafi, H.</au><au>Najafi, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal design of gas turbine-solid oxide fuel cell hybrid plant</atitle><btitle>2011 IEEE Electrical Power and Energy Conference</btitle><stitle>EPEC</stitle><date>2011-10</date><risdate>2011</risdate><spage>29</spage><epage>34</epage><pages>29-34</pages><isbn>1457704056</isbn><isbn>9781457704055</isbn><eisbn>9781457704031</eisbn><eisbn>145770403X</eisbn><eisbn>9781457704048</eisbn><eisbn>1457704048</eisbn><abstract>In the present study, a hybrid solid oxide fuel cell-gas turbine power plant consisting of a compressor, SOFC stack, heat exchangers, combustor and turbines is considered. Individual models are developed for each component through applications of the first law of thermodynamics and the corresponding cost of each component is also presented. Two objective functions including the total thermal efficiency of the system and the capital cost of the plant are defined. Since any effort to decrease the total cost of the plant leads to a less efficient system, the considered objective functions are conflicting. Therefore, multi-objective optimization using genetic algorithm is utilized in order to achieve a set of optimal solutions, each of which is a trade-off between objective functions. The main advantage of this work is providing a wide range of optimal results each of which can be selected by the designer considering available investment and the required efficiency of the system.</abstract><pub>IEEE</pub><doi>10.1109/EPEC.2011.6070215</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457704056
ispartof 2011 IEEE Electrical Power and Energy Conference, 2011, p.29-34
issn
language eng
recordid cdi_ieee_primary_6070215
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
Fuels
gas turbine
genetic algorithm
Genetic algorithms
Mathematical model
multi-objective optimization
Optimization
Power generation
solid oxide fuel cell
Thermodynamics
Turbines
title Optimal design of gas turbine-solid oxide fuel cell hybrid plant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20design%20of%20gas%20turbine-solid%20oxide%20fuel%20cell%20hybrid%20plant&rft.btitle=2011%20IEEE%20Electrical%20Power%20and%20Energy%20Conference&rft.au=Hoseinpoori,%20P.&rft.date=2011-10&rft.spage=29&rft.epage=34&rft.pages=29-34&rft.isbn=1457704056&rft.isbn_list=9781457704055&rft_id=info:doi/10.1109/EPEC.2011.6070215&rft_dat=%3Cieee_6IE%3E6070215%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457704031&rft.eisbn_list=145770403X&rft.eisbn_list=9781457704048&rft.eisbn_list=1457704048&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6070215&rfr_iscdi=true