Optimal parameters estimation of a BLDC motor by Kohonen's Self Organizing Map Method

Brushless DC motors are the widely used motors for they possess many advantages when compared with induction motors such as higher efficiencies, High torque to inertia ratios, Greater speed capabilities, Lower audible noise, Better thermal efficiencies, Lower EMI characteristics, electronically comm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jaganathan, B., Venkatesh, S., Bhardwaj, Y., Sridhar, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 071
container_issue
container_start_page 068
container_title
container_volume
creator Jaganathan, B.
Venkatesh, S.
Bhardwaj, Y.
Sridhar, V.
description Brushless DC motors are the widely used motors for they possess many advantages when compared with induction motors such as higher efficiencies, High torque to inertia ratios, Greater speed capabilities, Lower audible noise, Better thermal efficiencies, Lower EMI characteristics, electronically commutated etc., In the design of such advantageous motors it becomes necessary for the estimation of the performance characteristics parameters such as back EMF, stator current, rotor speed, Torque etc., Many ideas have been proposed for the estimation of these characteristic parameters. This paper proposes an unsupervised learning method i.e., Kohonen's Self Organizing Feature Map method of estimation of BLDCM drive parameters. Since the method makes use of `winner takes it all' of neurons, the values obtained by this, will be the optimal values. Simulation of the drive is first performed under ideal conditions and the values of the above mentioned parameters are obtained. Matlab coding is then written for KSOFM which is run and various maps of KSOFM are obtained. The values obtained using these two methods are compared and is found to match with each other. Because of the idea of "Winner takes it all" and the comparison with the ideal simulation, it can be concluded that the values obtained are optimal. As mentioned Matlab/Simulink is used for the simulation and the results obtained are shown with the inferences.
doi_str_mv 10.1109/RAICS.2011.6069274
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6069274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6069274</ieee_id><sourcerecordid>6069274</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-72a03d115dc69c1d81894cadf2737941b738c3b911eb40d1f5dabb1d6ec6c77e3</originalsourceid><addsrcrecordid>eNo1kD1PwzAYhI0QElDyB2DxxtTgN3bseCzhqyJVJFrmyh9v2qAkjpIs5ddTRLnldM9wOh0ht8BiAKYfPhbLfB0nDCCWTOpEiTNyDSIRQguV8nMSaZX95wwuSTSOX-woKbUEdUU-y36qW9PQ3gymxQmHkeL4i6Y6dDRU1NDH4imnbZjCQO2Bvod96LC7H-kam4qWw8509Xfd7ejK9HSF0z74G3JRmWbE6OQzsnl53uRv86J8XeaLYl5rNs1VYhj3AKl3UjvwGWRaOOOrRHGlBVjFM8etBkArmIcq9cZa8BKddEohn5G7v9oaEbf9cFw9HLanI_gPrshRiQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal parameters estimation of a BLDC motor by Kohonen's Self Organizing Map Method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jaganathan, B. ; Venkatesh, S. ; Bhardwaj, Y. ; Sridhar, V.</creator><creatorcontrib>Jaganathan, B. ; Venkatesh, S. ; Bhardwaj, Y. ; Sridhar, V.</creatorcontrib><description>Brushless DC motors are the widely used motors for they possess many advantages when compared with induction motors such as higher efficiencies, High torque to inertia ratios, Greater speed capabilities, Lower audible noise, Better thermal efficiencies, Lower EMI characteristics, electronically commutated etc., In the design of such advantageous motors it becomes necessary for the estimation of the performance characteristics parameters such as back EMF, stator current, rotor speed, Torque etc., Many ideas have been proposed for the estimation of these characteristic parameters. This paper proposes an unsupervised learning method i.e., Kohonen's Self Organizing Feature Map method of estimation of BLDCM drive parameters. Since the method makes use of `winner takes it all' of neurons, the values obtained by this, will be the optimal values. Simulation of the drive is first performed under ideal conditions and the values of the above mentioned parameters are obtained. Matlab coding is then written for KSOFM which is run and various maps of KSOFM are obtained. The values obtained using these two methods are compared and is found to match with each other. Because of the idea of "Winner takes it all" and the comparison with the ideal simulation, it can be concluded that the values obtained are optimal. As mentioned Matlab/Simulink is used for the simulation and the results obtained are shown with the inferences.</description><identifier>ISBN: 9781424494781</identifier><identifier>ISBN: 1424494788</identifier><identifier>EISBN: 1424494753</identifier><identifier>EISBN: 9781424494767</identifier><identifier>EISBN: 1424494761</identifier><identifier>EISBN: 9781424494750</identifier><identifier>EISBN: 142449477X</identifier><identifier>EISBN: 9781424494774</identifier><identifier>DOI: 10.1109/RAICS.2011.6069274</identifier><language>eng</language><publisher>IEEE</publisher><subject>Angular Speed ; Artificial Neural Network ; BLDC Motor ; DC motors ; Electromagnetics ; Epoch ; Estimation ; Induction motors ; KSOFM ; Neurons ; Optimal Parameters ; Reluctance motors ; Rotors ; Stator current ; Torque ; Unsupervised learning ; Weight matrix</subject><ispartof>2011 IEEE Recent Advances in Intelligent Computational Systems, 2011, p.068-071</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6069274$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6069274$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jaganathan, B.</creatorcontrib><creatorcontrib>Venkatesh, S.</creatorcontrib><creatorcontrib>Bhardwaj, Y.</creatorcontrib><creatorcontrib>Sridhar, V.</creatorcontrib><title>Optimal parameters estimation of a BLDC motor by Kohonen's Self Organizing Map Method</title><title>2011 IEEE Recent Advances in Intelligent Computational Systems</title><addtitle>RAICS</addtitle><description>Brushless DC motors are the widely used motors for they possess many advantages when compared with induction motors such as higher efficiencies, High torque to inertia ratios, Greater speed capabilities, Lower audible noise, Better thermal efficiencies, Lower EMI characteristics, electronically commutated etc., In the design of such advantageous motors it becomes necessary for the estimation of the performance characteristics parameters such as back EMF, stator current, rotor speed, Torque etc., Many ideas have been proposed for the estimation of these characteristic parameters. This paper proposes an unsupervised learning method i.e., Kohonen's Self Organizing Feature Map method of estimation of BLDCM drive parameters. Since the method makes use of `winner takes it all' of neurons, the values obtained by this, will be the optimal values. Simulation of the drive is first performed under ideal conditions and the values of the above mentioned parameters are obtained. Matlab coding is then written for KSOFM which is run and various maps of KSOFM are obtained. The values obtained using these two methods are compared and is found to match with each other. Because of the idea of "Winner takes it all" and the comparison with the ideal simulation, it can be concluded that the values obtained are optimal. As mentioned Matlab/Simulink is used for the simulation and the results obtained are shown with the inferences.</description><subject>Angular Speed</subject><subject>Artificial Neural Network</subject><subject>BLDC Motor</subject><subject>DC motors</subject><subject>Electromagnetics</subject><subject>Epoch</subject><subject>Estimation</subject><subject>Induction motors</subject><subject>KSOFM</subject><subject>Neurons</subject><subject>Optimal Parameters</subject><subject>Reluctance motors</subject><subject>Rotors</subject><subject>Stator current</subject><subject>Torque</subject><subject>Unsupervised learning</subject><subject>Weight matrix</subject><isbn>9781424494781</isbn><isbn>1424494788</isbn><isbn>1424494753</isbn><isbn>9781424494767</isbn><isbn>1424494761</isbn><isbn>9781424494750</isbn><isbn>142449477X</isbn><isbn>9781424494774</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kD1PwzAYhI0QElDyB2DxxtTgN3bseCzhqyJVJFrmyh9v2qAkjpIs5ddTRLnldM9wOh0ht8BiAKYfPhbLfB0nDCCWTOpEiTNyDSIRQguV8nMSaZX95wwuSTSOX-woKbUEdUU-y36qW9PQ3gymxQmHkeL4i6Y6dDRU1NDH4imnbZjCQO2Bvod96LC7H-kam4qWw8509Xfd7ejK9HSF0z74G3JRmWbE6OQzsnl53uRv86J8XeaLYl5rNs1VYhj3AKl3UjvwGWRaOOOrRHGlBVjFM8etBkArmIcq9cZa8BKddEohn5G7v9oaEbf9cFw9HLanI_gPrshRiQ</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Jaganathan, B.</creator><creator>Venkatesh, S.</creator><creator>Bhardwaj, Y.</creator><creator>Sridhar, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Optimal parameters estimation of a BLDC motor by Kohonen's Self Organizing Map Method</title><author>Jaganathan, B. ; Venkatesh, S. ; Bhardwaj, Y. ; Sridhar, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-72a03d115dc69c1d81894cadf2737941b738c3b911eb40d1f5dabb1d6ec6c77e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angular Speed</topic><topic>Artificial Neural Network</topic><topic>BLDC Motor</topic><topic>DC motors</topic><topic>Electromagnetics</topic><topic>Epoch</topic><topic>Estimation</topic><topic>Induction motors</topic><topic>KSOFM</topic><topic>Neurons</topic><topic>Optimal Parameters</topic><topic>Reluctance motors</topic><topic>Rotors</topic><topic>Stator current</topic><topic>Torque</topic><topic>Unsupervised learning</topic><topic>Weight matrix</topic><toplevel>online_resources</toplevel><creatorcontrib>Jaganathan, B.</creatorcontrib><creatorcontrib>Venkatesh, S.</creatorcontrib><creatorcontrib>Bhardwaj, Y.</creatorcontrib><creatorcontrib>Sridhar, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaganathan, B.</au><au>Venkatesh, S.</au><au>Bhardwaj, Y.</au><au>Sridhar, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal parameters estimation of a BLDC motor by Kohonen's Self Organizing Map Method</atitle><btitle>2011 IEEE Recent Advances in Intelligent Computational Systems</btitle><stitle>RAICS</stitle><date>2011-09</date><risdate>2011</risdate><spage>068</spage><epage>071</epage><pages>068-071</pages><isbn>9781424494781</isbn><isbn>1424494788</isbn><eisbn>1424494753</eisbn><eisbn>9781424494767</eisbn><eisbn>1424494761</eisbn><eisbn>9781424494750</eisbn><eisbn>142449477X</eisbn><eisbn>9781424494774</eisbn><abstract>Brushless DC motors are the widely used motors for they possess many advantages when compared with induction motors such as higher efficiencies, High torque to inertia ratios, Greater speed capabilities, Lower audible noise, Better thermal efficiencies, Lower EMI characteristics, electronically commutated etc., In the design of such advantageous motors it becomes necessary for the estimation of the performance characteristics parameters such as back EMF, stator current, rotor speed, Torque etc., Many ideas have been proposed for the estimation of these characteristic parameters. This paper proposes an unsupervised learning method i.e., Kohonen's Self Organizing Feature Map method of estimation of BLDCM drive parameters. Since the method makes use of `winner takes it all' of neurons, the values obtained by this, will be the optimal values. Simulation of the drive is first performed under ideal conditions and the values of the above mentioned parameters are obtained. Matlab coding is then written for KSOFM which is run and various maps of KSOFM are obtained. The values obtained using these two methods are compared and is found to match with each other. Because of the idea of "Winner takes it all" and the comparison with the ideal simulation, it can be concluded that the values obtained are optimal. As mentioned Matlab/Simulink is used for the simulation and the results obtained are shown with the inferences.</abstract><pub>IEEE</pub><doi>10.1109/RAICS.2011.6069274</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424494781
ispartof 2011 IEEE Recent Advances in Intelligent Computational Systems, 2011, p.068-071
issn
language eng
recordid cdi_ieee_primary_6069274
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Angular Speed
Artificial Neural Network
BLDC Motor
DC motors
Electromagnetics
Epoch
Estimation
Induction motors
KSOFM
Neurons
Optimal Parameters
Reluctance motors
Rotors
Stator current
Torque
Unsupervised learning
Weight matrix
title Optimal parameters estimation of a BLDC motor by Kohonen's Self Organizing Map Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20parameters%20estimation%20of%20a%20BLDC%20motor%20by%20Kohonen's%20Self%20Organizing%20Map%20Method&rft.btitle=2011%20IEEE%20Recent%20Advances%20in%20Intelligent%20Computational%20Systems&rft.au=Jaganathan,%20B.&rft.date=2011-09&rft.spage=068&rft.epage=071&rft.pages=068-071&rft.isbn=9781424494781&rft.isbn_list=1424494788&rft_id=info:doi/10.1109/RAICS.2011.6069274&rft_dat=%3Cieee_6IE%3E6069274%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424494753&rft.eisbn_list=9781424494767&rft.eisbn_list=1424494761&rft.eisbn_list=9781424494750&rft.eisbn_list=142449477X&rft.eisbn_list=9781424494774&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6069274&rfr_iscdi=true