Application of BP neural network in fast location of fault dictionary

Fault dictionary method is a kind of very practical fault diagnosis method. But large scale and complex circuits, the fault dictionary is huge, and the speed of fault searching affects the efficiency of real-time diagnosing. In this paper, a new method that the faults are classed and many son fault...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhu Sai, Cai Jinyan, Du Minjie, Chen Peng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1336
container_issue
container_start_page 1333
container_title
container_volume
creator Zhu Sai
Cai Jinyan
Du Minjie
Chen Peng
description Fault dictionary method is a kind of very practical fault diagnosis method. But large scale and complex circuits, the fault dictionary is huge, and the speed of fault searching affects the efficiency of real-time diagnosing. In this paper, a new method that the faults are classed and many son fault dictionaries are built with BP nerve networks organize the search index is introduced. This method using the BP nerve network's ability that could accurately describe the relation between input data and corresponding goal organizes the index in a multilayer binary tree with many BP nerve networks. Through this index, the seeking scope is reduced greatly, the searching speed is raised, and the efficiency of real-time diagnosing is improved.
doi_str_mv 10.1109/ICECC.2011.6066728
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6066728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6066728</ieee_id><sourcerecordid>6066728</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4b82b5e40864ab05e23423d53c169ab8721b58728db5f8895442300da49680073</originalsourceid><addsrcrecordid>eNpFT01LxDAUjIigrv0DeskfaH35To5rqLqwoIfd85K0CURrW9os4r-34opzeMO8ecxjELolUBEC5n5ja2srCoRUEqRUVJ-hwihNuFAKGCX6HF3_CWCXqJjnN1ggpaFKXaF6PY5dalxOQ4-HiB9ecR-Ok-sWyp_D9I5Tj6ObM-6G_6vojl3GbWp-Fm76ukEX0XVzKE68QvvHemefy-3L08aut2UiSuSSe029CBy05M6DCJRxylrBGiKN81pR4sUydetF1NoIvtgAreNGagDFVujuNzeFEA7jlD6W54dTc_YNMC5Ksw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of BP neural network in fast location of fault dictionary</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhu Sai ; Cai Jinyan ; Du Minjie ; Chen Peng</creator><creatorcontrib>Zhu Sai ; Cai Jinyan ; Du Minjie ; Chen Peng</creatorcontrib><description>Fault dictionary method is a kind of very practical fault diagnosis method. But large scale and complex circuits, the fault dictionary is huge, and the speed of fault searching affects the efficiency of real-time diagnosing. In this paper, a new method that the faults are classed and many son fault dictionaries are built with BP nerve networks organize the search index is introduced. This method using the BP nerve network's ability that could accurately describe the relation between input data and corresponding goal organizes the index in a multilayer binary tree with many BP nerve networks. Through this index, the seeking scope is reduced greatly, the searching speed is raised, and the efficiency of real-time diagnosing is improved.</description><identifier>ISBN: 1457703203</identifier><identifier>ISBN: 9781457703201</identifier><identifier>EISBN: 9781457703218</identifier><identifier>EISBN: 145770319X</identifier><identifier>EISBN: 1457703211</identifier><identifier>EISBN: 9781457703195</identifier><identifier>DOI: 10.1109/ICECC.2011.6066728</identifier><language>eng</language><publisher>IEEE</publisher><subject>binary tree ; Binary trees ; BP neural network ; Circuit faults ; Dictionaries ; Fault diagnosis ; fault search ; index ; Indexes ; Neurons ; Real time systems ; son fault dictionary</subject><ispartof>2011 International Conference on Electronics, Communications and Control (ICECC), 2011, p.1333-1336</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6066728$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6066728$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu Sai</creatorcontrib><creatorcontrib>Cai Jinyan</creatorcontrib><creatorcontrib>Du Minjie</creatorcontrib><creatorcontrib>Chen Peng</creatorcontrib><title>Application of BP neural network in fast location of fault dictionary</title><title>2011 International Conference on Electronics, Communications and Control (ICECC)</title><addtitle>ICECC</addtitle><description>Fault dictionary method is a kind of very practical fault diagnosis method. But large scale and complex circuits, the fault dictionary is huge, and the speed of fault searching affects the efficiency of real-time diagnosing. In this paper, a new method that the faults are classed and many son fault dictionaries are built with BP nerve networks organize the search index is introduced. This method using the BP nerve network's ability that could accurately describe the relation between input data and corresponding goal organizes the index in a multilayer binary tree with many BP nerve networks. Through this index, the seeking scope is reduced greatly, the searching speed is raised, and the efficiency of real-time diagnosing is improved.</description><subject>binary tree</subject><subject>Binary trees</subject><subject>BP neural network</subject><subject>Circuit faults</subject><subject>Dictionaries</subject><subject>Fault diagnosis</subject><subject>fault search</subject><subject>index</subject><subject>Indexes</subject><subject>Neurons</subject><subject>Real time systems</subject><subject>son fault dictionary</subject><isbn>1457703203</isbn><isbn>9781457703201</isbn><isbn>9781457703218</isbn><isbn>145770319X</isbn><isbn>1457703211</isbn><isbn>9781457703195</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT01LxDAUjIigrv0DeskfaH35To5rqLqwoIfd85K0CURrW9os4r-34opzeMO8ecxjELolUBEC5n5ja2srCoRUEqRUVJ-hwihNuFAKGCX6HF3_CWCXqJjnN1ggpaFKXaF6PY5dalxOQ4-HiB9ecR-Ok-sWyp_D9I5Tj6ObM-6G_6vojl3GbWp-Fm76ukEX0XVzKE68QvvHemefy-3L08aut2UiSuSSe029CBy05M6DCJRxylrBGiKN81pR4sUydetF1NoIvtgAreNGagDFVujuNzeFEA7jlD6W54dTc_YNMC5Ksw</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Zhu Sai</creator><creator>Cai Jinyan</creator><creator>Du Minjie</creator><creator>Chen Peng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Application of BP neural network in fast location of fault dictionary</title><author>Zhu Sai ; Cai Jinyan ; Du Minjie ; Chen Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4b82b5e40864ab05e23423d53c169ab8721b58728db5f8895442300da49680073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>binary tree</topic><topic>Binary trees</topic><topic>BP neural network</topic><topic>Circuit faults</topic><topic>Dictionaries</topic><topic>Fault diagnosis</topic><topic>fault search</topic><topic>index</topic><topic>Indexes</topic><topic>Neurons</topic><topic>Real time systems</topic><topic>son fault dictionary</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu Sai</creatorcontrib><creatorcontrib>Cai Jinyan</creatorcontrib><creatorcontrib>Du Minjie</creatorcontrib><creatorcontrib>Chen Peng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu Sai</au><au>Cai Jinyan</au><au>Du Minjie</au><au>Chen Peng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of BP neural network in fast location of fault dictionary</atitle><btitle>2011 International Conference on Electronics, Communications and Control (ICECC)</btitle><stitle>ICECC</stitle><date>2011-09</date><risdate>2011</risdate><spage>1333</spage><epage>1336</epage><pages>1333-1336</pages><isbn>1457703203</isbn><isbn>9781457703201</isbn><eisbn>9781457703218</eisbn><eisbn>145770319X</eisbn><eisbn>1457703211</eisbn><eisbn>9781457703195</eisbn><abstract>Fault dictionary method is a kind of very practical fault diagnosis method. But large scale and complex circuits, the fault dictionary is huge, and the speed of fault searching affects the efficiency of real-time diagnosing. In this paper, a new method that the faults are classed and many son fault dictionaries are built with BP nerve networks organize the search index is introduced. This method using the BP nerve network's ability that could accurately describe the relation between input data and corresponding goal organizes the index in a multilayer binary tree with many BP nerve networks. Through this index, the seeking scope is reduced greatly, the searching speed is raised, and the efficiency of real-time diagnosing is improved.</abstract><pub>IEEE</pub><doi>10.1109/ICECC.2011.6066728</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457703203
ispartof 2011 International Conference on Electronics, Communications and Control (ICECC), 2011, p.1333-1336
issn
language eng
recordid cdi_ieee_primary_6066728
source IEEE Electronic Library (IEL) Conference Proceedings
subjects binary tree
Binary trees
BP neural network
Circuit faults
Dictionaries
Fault diagnosis
fault search
index
Indexes
Neurons
Real time systems
son fault dictionary
title Application of BP neural network in fast location of fault dictionary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20BP%20neural%20network%20in%20fast%20location%20of%20fault%20dictionary&rft.btitle=2011%20International%20Conference%20on%20Electronics,%20Communications%20and%20Control%20(ICECC)&rft.au=Zhu%20Sai&rft.date=2011-09&rft.spage=1333&rft.epage=1336&rft.pages=1333-1336&rft.isbn=1457703203&rft.isbn_list=9781457703201&rft_id=info:doi/10.1109/ICECC.2011.6066728&rft_dat=%3Cieee_6IE%3E6066728%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457703218&rft.eisbn_list=145770319X&rft.eisbn_list=1457703211&rft.eisbn_list=9781457703195&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6066728&rfr_iscdi=true