Application of BP neural network in fast location of fault dictionary
Fault dictionary method is a kind of very practical fault diagnosis method. But large scale and complex circuits, the fault dictionary is huge, and the speed of fault searching affects the efficiency of real-time diagnosing. In this paper, a new method that the faults are classed and many son fault...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1336 |
---|---|
container_issue | |
container_start_page | 1333 |
container_title | |
container_volume | |
creator | Zhu Sai Cai Jinyan Du Minjie Chen Peng |
description | Fault dictionary method is a kind of very practical fault diagnosis method. But large scale and complex circuits, the fault dictionary is huge, and the speed of fault searching affects the efficiency of real-time diagnosing. In this paper, a new method that the faults are classed and many son fault dictionaries are built with BP nerve networks organize the search index is introduced. This method using the BP nerve network's ability that could accurately describe the relation between input data and corresponding goal organizes the index in a multilayer binary tree with many BP nerve networks. Through this index, the seeking scope is reduced greatly, the searching speed is raised, and the efficiency of real-time diagnosing is improved. |
doi_str_mv | 10.1109/ICECC.2011.6066728 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6066728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6066728</ieee_id><sourcerecordid>6066728</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4b82b5e40864ab05e23423d53c169ab8721b58728db5f8895442300da49680073</originalsourceid><addsrcrecordid>eNpFT01LxDAUjIigrv0DeskfaH35To5rqLqwoIfd85K0CURrW9os4r-34opzeMO8ecxjELolUBEC5n5ja2srCoRUEqRUVJ-hwihNuFAKGCX6HF3_CWCXqJjnN1ggpaFKXaF6PY5dalxOQ4-HiB9ecR-Ok-sWyp_D9I5Tj6ObM-6G_6vojl3GbWp-Fm76ukEX0XVzKE68QvvHemefy-3L08aut2UiSuSSe029CBy05M6DCJRxylrBGiKN81pR4sUydetF1NoIvtgAreNGagDFVujuNzeFEA7jlD6W54dTc_YNMC5Ksw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of BP neural network in fast location of fault dictionary</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhu Sai ; Cai Jinyan ; Du Minjie ; Chen Peng</creator><creatorcontrib>Zhu Sai ; Cai Jinyan ; Du Minjie ; Chen Peng</creatorcontrib><description>Fault dictionary method is a kind of very practical fault diagnosis method. But large scale and complex circuits, the fault dictionary is huge, and the speed of fault searching affects the efficiency of real-time diagnosing. In this paper, a new method that the faults are classed and many son fault dictionaries are built with BP nerve networks organize the search index is introduced. This method using the BP nerve network's ability that could accurately describe the relation between input data and corresponding goal organizes the index in a multilayer binary tree with many BP nerve networks. Through this index, the seeking scope is reduced greatly, the searching speed is raised, and the efficiency of real-time diagnosing is improved.</description><identifier>ISBN: 1457703203</identifier><identifier>ISBN: 9781457703201</identifier><identifier>EISBN: 9781457703218</identifier><identifier>EISBN: 145770319X</identifier><identifier>EISBN: 1457703211</identifier><identifier>EISBN: 9781457703195</identifier><identifier>DOI: 10.1109/ICECC.2011.6066728</identifier><language>eng</language><publisher>IEEE</publisher><subject>binary tree ; Binary trees ; BP neural network ; Circuit faults ; Dictionaries ; Fault diagnosis ; fault search ; index ; Indexes ; Neurons ; Real time systems ; son fault dictionary</subject><ispartof>2011 International Conference on Electronics, Communications and Control (ICECC), 2011, p.1333-1336</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6066728$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6066728$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu Sai</creatorcontrib><creatorcontrib>Cai Jinyan</creatorcontrib><creatorcontrib>Du Minjie</creatorcontrib><creatorcontrib>Chen Peng</creatorcontrib><title>Application of BP neural network in fast location of fault dictionary</title><title>2011 International Conference on Electronics, Communications and Control (ICECC)</title><addtitle>ICECC</addtitle><description>Fault dictionary method is a kind of very practical fault diagnosis method. But large scale and complex circuits, the fault dictionary is huge, and the speed of fault searching affects the efficiency of real-time diagnosing. In this paper, a new method that the faults are classed and many son fault dictionaries are built with BP nerve networks organize the search index is introduced. This method using the BP nerve network's ability that could accurately describe the relation between input data and corresponding goal organizes the index in a multilayer binary tree with many BP nerve networks. Through this index, the seeking scope is reduced greatly, the searching speed is raised, and the efficiency of real-time diagnosing is improved.</description><subject>binary tree</subject><subject>Binary trees</subject><subject>BP neural network</subject><subject>Circuit faults</subject><subject>Dictionaries</subject><subject>Fault diagnosis</subject><subject>fault search</subject><subject>index</subject><subject>Indexes</subject><subject>Neurons</subject><subject>Real time systems</subject><subject>son fault dictionary</subject><isbn>1457703203</isbn><isbn>9781457703201</isbn><isbn>9781457703218</isbn><isbn>145770319X</isbn><isbn>1457703211</isbn><isbn>9781457703195</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT01LxDAUjIigrv0DeskfaH35To5rqLqwoIfd85K0CURrW9os4r-34opzeMO8ecxjELolUBEC5n5ja2srCoRUEqRUVJ-hwihNuFAKGCX6HF3_CWCXqJjnN1ggpaFKXaF6PY5dalxOQ4-HiB9ecR-Ok-sWyp_D9I5Tj6ObM-6G_6vojl3GbWp-Fm76ukEX0XVzKE68QvvHemefy-3L08aut2UiSuSSe029CBy05M6DCJRxylrBGiKN81pR4sUydetF1NoIvtgAreNGagDFVujuNzeFEA7jlD6W54dTc_YNMC5Ksw</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Zhu Sai</creator><creator>Cai Jinyan</creator><creator>Du Minjie</creator><creator>Chen Peng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Application of BP neural network in fast location of fault dictionary</title><author>Zhu Sai ; Cai Jinyan ; Du Minjie ; Chen Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4b82b5e40864ab05e23423d53c169ab8721b58728db5f8895442300da49680073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>binary tree</topic><topic>Binary trees</topic><topic>BP neural network</topic><topic>Circuit faults</topic><topic>Dictionaries</topic><topic>Fault diagnosis</topic><topic>fault search</topic><topic>index</topic><topic>Indexes</topic><topic>Neurons</topic><topic>Real time systems</topic><topic>son fault dictionary</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu Sai</creatorcontrib><creatorcontrib>Cai Jinyan</creatorcontrib><creatorcontrib>Du Minjie</creatorcontrib><creatorcontrib>Chen Peng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu Sai</au><au>Cai Jinyan</au><au>Du Minjie</au><au>Chen Peng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of BP neural network in fast location of fault dictionary</atitle><btitle>2011 International Conference on Electronics, Communications and Control (ICECC)</btitle><stitle>ICECC</stitle><date>2011-09</date><risdate>2011</risdate><spage>1333</spage><epage>1336</epage><pages>1333-1336</pages><isbn>1457703203</isbn><isbn>9781457703201</isbn><eisbn>9781457703218</eisbn><eisbn>145770319X</eisbn><eisbn>1457703211</eisbn><eisbn>9781457703195</eisbn><abstract>Fault dictionary method is a kind of very practical fault diagnosis method. But large scale and complex circuits, the fault dictionary is huge, and the speed of fault searching affects the efficiency of real-time diagnosing. In this paper, a new method that the faults are classed and many son fault dictionaries are built with BP nerve networks organize the search index is introduced. This method using the BP nerve network's ability that could accurately describe the relation between input data and corresponding goal organizes the index in a multilayer binary tree with many BP nerve networks. Through this index, the seeking scope is reduced greatly, the searching speed is raised, and the efficiency of real-time diagnosing is improved.</abstract><pub>IEEE</pub><doi>10.1109/ICECC.2011.6066728</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457703203 |
ispartof | 2011 International Conference on Electronics, Communications and Control (ICECC), 2011, p.1333-1336 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6066728 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | binary tree Binary trees BP neural network Circuit faults Dictionaries Fault diagnosis fault search index Indexes Neurons Real time systems son fault dictionary |
title | Application of BP neural network in fast location of fault dictionary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20BP%20neural%20network%20in%20fast%20location%20of%20fault%20dictionary&rft.btitle=2011%20International%20Conference%20on%20Electronics,%20Communications%20and%20Control%20(ICECC)&rft.au=Zhu%20Sai&rft.date=2011-09&rft.spage=1333&rft.epage=1336&rft.pages=1333-1336&rft.isbn=1457703203&rft.isbn_list=9781457703201&rft_id=info:doi/10.1109/ICECC.2011.6066728&rft_dat=%3Cieee_6IE%3E6066728%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457703218&rft.eisbn_list=145770319X&rft.eisbn_list=1457703211&rft.eisbn_list=9781457703195&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6066728&rfr_iscdi=true |