Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning
Reading text from photographs is a challenging problem that has received a significant amount of attention. Two key components of most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design better feature representations and mo...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 445 |
---|---|
container_issue | |
container_start_page | 440 |
container_title | |
container_volume | |
creator | Coates, A. Carpenter, B. Case, C. Satheesh, S. Suresh, B. Tao Wang Wu, D. J. Ng, A. Y. |
description | Reading text from photographs is a challenging problem that has received a significant amount of attention. Two key components of most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design better feature representations and models for both. In this paper, we apply methods recently developed in machine learning -- specifically, large-scale algorithms for learning the features automatically from unlabeled data -- and show that they allow us to construct highly effective classifiers for both detection and recognition to be used in a high accuracy end-to-end system. |
doi_str_mv | 10.1109/ICDAR.2011.95 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6065350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6065350</ieee_id><sourcerecordid>6065350</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-58e08fcbb34e412bf793d9577caf765ee0d5c894d530e325d4e05876b3e6dc733</originalsourceid><addsrcrecordid>eNotj01PAjEYhOtXIiJHT176Bxbbbd92eySrKAmJCcLJA-m270KNFNItfvx7N-pc5jCTyTOE3HA25pyZu1l9P1mMS8b52MAJGRldMa0MSChZeUoGpdCmKLlkZ-SKS9CaC2DsnAx4XyhAKHFJRl33xnopZTjwAXld4lem95jR5bCP1EZP661N1mVMdIFuv4nhNwmRvjiMSGc7u8GOfoa8pavYHQ-YPkKHnk7R5mNCOkebYoiba3LR2vcOR_8-JKvpw7J-KubPj7N6Mi9CD5sLqJBVrWsaIVHysmm1Ed70-M62WgEi8-AqIz0IhqIEL5FBpVUjUHmnhRiS27_dgIjrQwo7m77Xiino_4sf9XxXCw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Coates, A. ; Carpenter, B. ; Case, C. ; Satheesh, S. ; Suresh, B. ; Tao Wang ; Wu, D. J. ; Ng, A. Y.</creator><creatorcontrib>Coates, A. ; Carpenter, B. ; Case, C. ; Satheesh, S. ; Suresh, B. ; Tao Wang ; Wu, D. J. ; Ng, A. Y.</creatorcontrib><description>Reading text from photographs is a challenging problem that has received a significant amount of attention. Two key components of most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design better feature representations and models for both. In this paper, we apply methods recently developed in machine learning -- specifically, large-scale algorithms for learning the features automatically from unlabeled data -- and show that they allow us to construct highly effective classifiers for both detection and recognition to be used in a high accuracy end-to-end system.</description><identifier>ISSN: 1520-5363</identifier><identifier>ISBN: 1457713500</identifier><identifier>ISBN: 9781457713507</identifier><identifier>EISSN: 2379-2140</identifier><identifier>EISBN: 9780769545202</identifier><identifier>EISBN: 0769545203</identifier><identifier>DOI: 10.1109/ICDAR.2011.95</identifier><language>eng</language><publisher>IEEE</publisher><subject>character recognition ; feature learning ; photo OCR ; Robust reading ; Text analysis</subject><ispartof>2011 International Conference on Document Analysis and Recognition, 2011, p.440-445</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6065350$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6065350$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Coates, A.</creatorcontrib><creatorcontrib>Carpenter, B.</creatorcontrib><creatorcontrib>Case, C.</creatorcontrib><creatorcontrib>Satheesh, S.</creatorcontrib><creatorcontrib>Suresh, B.</creatorcontrib><creatorcontrib>Tao Wang</creatorcontrib><creatorcontrib>Wu, D. J.</creatorcontrib><creatorcontrib>Ng, A. Y.</creatorcontrib><title>Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning</title><title>2011 International Conference on Document Analysis and Recognition</title><addtitle>icdar</addtitle><description>Reading text from photographs is a challenging problem that has received a significant amount of attention. Two key components of most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design better feature representations and models for both. In this paper, we apply methods recently developed in machine learning -- specifically, large-scale algorithms for learning the features automatically from unlabeled data -- and show that they allow us to construct highly effective classifiers for both detection and recognition to be used in a high accuracy end-to-end system.</description><subject>character recognition</subject><subject>feature learning</subject><subject>photo OCR</subject><subject>Robust reading</subject><subject>Text analysis</subject><issn>1520-5363</issn><issn>2379-2140</issn><isbn>1457713500</isbn><isbn>9781457713507</isbn><isbn>9780769545202</isbn><isbn>0769545203</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01PAjEYhOtXIiJHT176Bxbbbd92eySrKAmJCcLJA-m270KNFNItfvx7N-pc5jCTyTOE3HA25pyZu1l9P1mMS8b52MAJGRldMa0MSChZeUoGpdCmKLlkZ-SKS9CaC2DsnAx4XyhAKHFJRl33xnopZTjwAXld4lem95jR5bCP1EZP661N1mVMdIFuv4nhNwmRvjiMSGc7u8GOfoa8pavYHQ-YPkKHnk7R5mNCOkebYoiba3LR2vcOR_8-JKvpw7J-KubPj7N6Mi9CD5sLqJBVrWsaIVHysmm1Ed70-M62WgEi8-AqIz0IhqIEL5FBpVUjUHmnhRiS27_dgIjrQwo7m77Xiino_4sf9XxXCw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Coates, A.</creator><creator>Carpenter, B.</creator><creator>Case, C.</creator><creator>Satheesh, S.</creator><creator>Suresh, B.</creator><creator>Tao Wang</creator><creator>Wu, D. J.</creator><creator>Ng, A. Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20110101</creationdate><title>Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning</title><author>Coates, A. ; Carpenter, B. ; Case, C. ; Satheesh, S. ; Suresh, B. ; Tao Wang ; Wu, D. J. ; Ng, A. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-58e08fcbb34e412bf793d9577caf765ee0d5c894d530e325d4e05876b3e6dc733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>character recognition</topic><topic>feature learning</topic><topic>photo OCR</topic><topic>Robust reading</topic><topic>Text analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Coates, A.</creatorcontrib><creatorcontrib>Carpenter, B.</creatorcontrib><creatorcontrib>Case, C.</creatorcontrib><creatorcontrib>Satheesh, S.</creatorcontrib><creatorcontrib>Suresh, B.</creatorcontrib><creatorcontrib>Tao Wang</creatorcontrib><creatorcontrib>Wu, D. J.</creatorcontrib><creatorcontrib>Ng, A. Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Coates, A.</au><au>Carpenter, B.</au><au>Case, C.</au><au>Satheesh, S.</au><au>Suresh, B.</au><au>Tao Wang</au><au>Wu, D. J.</au><au>Ng, A. Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning</atitle><btitle>2011 International Conference on Document Analysis and Recognition</btitle><stitle>icdar</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>440</spage><epage>445</epage><pages>440-445</pages><issn>1520-5363</issn><eissn>2379-2140</eissn><isbn>1457713500</isbn><isbn>9781457713507</isbn><eisbn>9780769545202</eisbn><eisbn>0769545203</eisbn><abstract>Reading text from photographs is a challenging problem that has received a significant amount of attention. Two key components of most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design better feature representations and models for both. In this paper, we apply methods recently developed in machine learning -- specifically, large-scale algorithms for learning the features automatically from unlabeled data -- and show that they allow us to construct highly effective classifiers for both detection and recognition to be used in a high accuracy end-to-end system.</abstract><pub>IEEE</pub><doi>10.1109/ICDAR.2011.95</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-5363 |
ispartof | 2011 International Conference on Document Analysis and Recognition, 2011, p.440-445 |
issn | 1520-5363 2379-2140 |
language | eng |
recordid | cdi_ieee_primary_6065350 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | character recognition feature learning photo OCR Robust reading Text analysis |
title | Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Text%20Detection%20and%20Character%20Recognition%20in%20Scene%20Images%20with%20Unsupervised%20Feature%20Learning&rft.btitle=2011%20International%20Conference%20on%20Document%20Analysis%20and%20Recognition&rft.au=Coates,%20A.&rft.date=2011-01-01&rft.spage=440&rft.epage=445&rft.pages=440-445&rft.issn=1520-5363&rft.eissn=2379-2140&rft.isbn=1457713500&rft.isbn_list=9781457713507&rft_id=info:doi/10.1109/ICDAR.2011.95&rft_dat=%3Cieee_6IE%3E6065350%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769545202&rft.eisbn_list=0769545203&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6065350&rfr_iscdi=true |