Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning

Reading text from photographs is a challenging problem that has received a significant amount of attention. Two key components of most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design better feature representations and mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Coates, A., Carpenter, B., Case, C., Satheesh, S., Suresh, B., Tao Wang, Wu, D. J., Ng, A. Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue
container_start_page 440
container_title
container_volume
creator Coates, A.
Carpenter, B.
Case, C.
Satheesh, S.
Suresh, B.
Tao Wang
Wu, D. J.
Ng, A. Y.
description Reading text from photographs is a challenging problem that has received a significant amount of attention. Two key components of most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design better feature representations and models for both. In this paper, we apply methods recently developed in machine learning -- specifically, large-scale algorithms for learning the features automatically from unlabeled data -- and show that they allow us to construct highly effective classifiers for both detection and recognition to be used in a high accuracy end-to-end system.
doi_str_mv 10.1109/ICDAR.2011.95
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6065350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6065350</ieee_id><sourcerecordid>6065350</sourcerecordid><originalsourceid>FETCH-LOGICAL-i214t-58e08fcbb34e412bf793d9577caf765ee0d5c894d530e325d4e05876b3e6dc733</originalsourceid><addsrcrecordid>eNotj01PAjEYhOtXIiJHT176Bxbbbd92eySrKAmJCcLJA-m270KNFNItfvx7N-pc5jCTyTOE3HA25pyZu1l9P1mMS8b52MAJGRldMa0MSChZeUoGpdCmKLlkZ-SKS9CaC2DsnAx4XyhAKHFJRl33xnopZTjwAXld4lem95jR5bCP1EZP661N1mVMdIFuv4nhNwmRvjiMSGc7u8GOfoa8pavYHQ-YPkKHnk7R5mNCOkebYoiba3LR2vcOR_8-JKvpw7J-KubPj7N6Mi9CD5sLqJBVrWsaIVHysmm1Ed70-M62WgEi8-AqIz0IhqIEL5FBpVUjUHmnhRiS27_dgIjrQwo7m77Xiino_4sf9XxXCw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Coates, A. ; Carpenter, B. ; Case, C. ; Satheesh, S. ; Suresh, B. ; Tao Wang ; Wu, D. J. ; Ng, A. Y.</creator><creatorcontrib>Coates, A. ; Carpenter, B. ; Case, C. ; Satheesh, S. ; Suresh, B. ; Tao Wang ; Wu, D. J. ; Ng, A. Y.</creatorcontrib><description>Reading text from photographs is a challenging problem that has received a significant amount of attention. Two key components of most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design better feature representations and models for both. In this paper, we apply methods recently developed in machine learning -- specifically, large-scale algorithms for learning the features automatically from unlabeled data -- and show that they allow us to construct highly effective classifiers for both detection and recognition to be used in a high accuracy end-to-end system.</description><identifier>ISSN: 1520-5363</identifier><identifier>ISBN: 1457713500</identifier><identifier>ISBN: 9781457713507</identifier><identifier>EISSN: 2379-2140</identifier><identifier>EISBN: 9780769545202</identifier><identifier>EISBN: 0769545203</identifier><identifier>DOI: 10.1109/ICDAR.2011.95</identifier><language>eng</language><publisher>IEEE</publisher><subject>character recognition ; feature learning ; photo OCR ; Robust reading ; Text analysis</subject><ispartof>2011 International Conference on Document Analysis and Recognition, 2011, p.440-445</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6065350$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6065350$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Coates, A.</creatorcontrib><creatorcontrib>Carpenter, B.</creatorcontrib><creatorcontrib>Case, C.</creatorcontrib><creatorcontrib>Satheesh, S.</creatorcontrib><creatorcontrib>Suresh, B.</creatorcontrib><creatorcontrib>Tao Wang</creatorcontrib><creatorcontrib>Wu, D. J.</creatorcontrib><creatorcontrib>Ng, A. Y.</creatorcontrib><title>Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning</title><title>2011 International Conference on Document Analysis and Recognition</title><addtitle>icdar</addtitle><description>Reading text from photographs is a challenging problem that has received a significant amount of attention. Two key components of most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design better feature representations and models for both. In this paper, we apply methods recently developed in machine learning -- specifically, large-scale algorithms for learning the features automatically from unlabeled data -- and show that they allow us to construct highly effective classifiers for both detection and recognition to be used in a high accuracy end-to-end system.</description><subject>character recognition</subject><subject>feature learning</subject><subject>photo OCR</subject><subject>Robust reading</subject><subject>Text analysis</subject><issn>1520-5363</issn><issn>2379-2140</issn><isbn>1457713500</isbn><isbn>9781457713507</isbn><isbn>9780769545202</isbn><isbn>0769545203</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01PAjEYhOtXIiJHT176Bxbbbd92eySrKAmJCcLJA-m270KNFNItfvx7N-pc5jCTyTOE3HA25pyZu1l9P1mMS8b52MAJGRldMa0MSChZeUoGpdCmKLlkZ-SKS9CaC2DsnAx4XyhAKHFJRl33xnopZTjwAXld4lem95jR5bCP1EZP661N1mVMdIFuv4nhNwmRvjiMSGc7u8GOfoa8pavYHQ-YPkKHnk7R5mNCOkebYoiba3LR2vcOR_8-JKvpw7J-KubPj7N6Mi9CD5sLqJBVrWsaIVHysmm1Ed70-M62WgEi8-AqIz0IhqIEL5FBpVUjUHmnhRiS27_dgIjrQwo7m77Xiino_4sf9XxXCw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Coates, A.</creator><creator>Carpenter, B.</creator><creator>Case, C.</creator><creator>Satheesh, S.</creator><creator>Suresh, B.</creator><creator>Tao Wang</creator><creator>Wu, D. J.</creator><creator>Ng, A. Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20110101</creationdate><title>Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning</title><author>Coates, A. ; Carpenter, B. ; Case, C. ; Satheesh, S. ; Suresh, B. ; Tao Wang ; Wu, D. J. ; Ng, A. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i214t-58e08fcbb34e412bf793d9577caf765ee0d5c894d530e325d4e05876b3e6dc733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>character recognition</topic><topic>feature learning</topic><topic>photo OCR</topic><topic>Robust reading</topic><topic>Text analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Coates, A.</creatorcontrib><creatorcontrib>Carpenter, B.</creatorcontrib><creatorcontrib>Case, C.</creatorcontrib><creatorcontrib>Satheesh, S.</creatorcontrib><creatorcontrib>Suresh, B.</creatorcontrib><creatorcontrib>Tao Wang</creatorcontrib><creatorcontrib>Wu, D. J.</creatorcontrib><creatorcontrib>Ng, A. Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Coates, A.</au><au>Carpenter, B.</au><au>Case, C.</au><au>Satheesh, S.</au><au>Suresh, B.</au><au>Tao Wang</au><au>Wu, D. J.</au><au>Ng, A. Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning</atitle><btitle>2011 International Conference on Document Analysis and Recognition</btitle><stitle>icdar</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>440</spage><epage>445</epage><pages>440-445</pages><issn>1520-5363</issn><eissn>2379-2140</eissn><isbn>1457713500</isbn><isbn>9781457713507</isbn><eisbn>9780769545202</eisbn><eisbn>0769545203</eisbn><abstract>Reading text from photographs is a challenging problem that has received a significant amount of attention. Two key components of most systems are (i) text detection from images and (ii) character recognition, and many recent methods have been proposed to design better feature representations and models for both. In this paper, we apply methods recently developed in machine learning -- specifically, large-scale algorithms for learning the features automatically from unlabeled data -- and show that they allow us to construct highly effective classifiers for both detection and recognition to be used in a high accuracy end-to-end system.</abstract><pub>IEEE</pub><doi>10.1109/ICDAR.2011.95</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-5363
ispartof 2011 International Conference on Document Analysis and Recognition, 2011, p.440-445
issn 1520-5363
2379-2140
language eng
recordid cdi_ieee_primary_6065350
source IEEE Electronic Library (IEL) Conference Proceedings
subjects character recognition
feature learning
photo OCR
Robust reading
Text analysis
title Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Text%20Detection%20and%20Character%20Recognition%20in%20Scene%20Images%20with%20Unsupervised%20Feature%20Learning&rft.btitle=2011%20International%20Conference%20on%20Document%20Analysis%20and%20Recognition&rft.au=Coates,%20A.&rft.date=2011-01-01&rft.spage=440&rft.epage=445&rft.pages=440-445&rft.issn=1520-5363&rft.eissn=2379-2140&rft.isbn=1457713500&rft.isbn_list=9781457713507&rft_id=info:doi/10.1109/ICDAR.2011.95&rft_dat=%3Cieee_6IE%3E6065350%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769545202&rft.eisbn_list=0769545203&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6065350&rfr_iscdi=true