Optimal power flow for hybrid ultracapacitor systems in light electric vehicles

This work demonstrates a predictive power optimization algorithm to control the power mix in a hybrid energy storage system, consisting of an ultracapacitor module and a lithium-ion battery pack for light electric vehicle applications. The algorithm uses a state-based approach, organized as a probab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Laldin, O., Moshirvaziri, M., Trescases, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2922
container_issue
container_start_page 2916
container_title
container_volume
creator Laldin, O.
Moshirvaziri, M.
Trescases, O.
description This work demonstrates a predictive power optimization algorithm to control the power mix in a hybrid energy storage system, consisting of an ultracapacitor module and a lithium-ion battery pack for light electric vehicle applications. The algorithm uses a state-based approach, organized as a probability-weighted Markov process to predict future load demands. Decisions on power sharing are made in real-time, based on the predictions and probabilities of state trajectories along with associated system losses. A real-time global optimizer is then used to control the appropriate power mix using dc-dc converters. The full hybrid storage system, along with the mechanical drivetrain is implemented and validated experimentally on a 350 W, 50 V system with a programmable drive-cycle having a strong regenerative component. It is shown that the HESS system runs more efficiently and captures the excess regenerative energy that is otherwise dissipated in the mechanical brakes due to the battery's limited charge current capability.
doi_str_mv 10.1109/ECCE.2011.6064161
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6064161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6064161</ieee_id><sourcerecordid>6064161</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9914ce843ba120d261b062f8dc726ad5a4015b3a87a984bbf11c1d62f72dd0ad3</originalsourceid><addsrcrecordid>eNo9kM9KAzEYxOM_sNY-gHjJC-z6fUk2yR5laVUo9KLnkk2yNpLaJYmWvr0Fq6eB-Q0DM4TcIdSI0D7Mu25eM0CsJUiBEs_IrFUaRaMUNAL4OZkwztqKK6EvyM0fYOryHzC8JrOcPwAApWYacEJWq7GErYl03O19okPc7emwS3Rz6FNw9CuWZKwZjQ3l6OZDLn6bafikMbxvCvXR25KCpd9-E2z0-ZZcDSZmPzvplLwt5q_dc7VcPb10j8sqoGpK1bYorNeC9wYZOCaxB8kG7axi0rjGCMCm50Yr02rR9wOiRXdMKOYcGMen5P63N3jv12M6bkiH9ekb_gPLMVQ6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal power flow for hybrid ultracapacitor systems in light electric vehicles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Laldin, O. ; Moshirvaziri, M. ; Trescases, O.</creator><creatorcontrib>Laldin, O. ; Moshirvaziri, M. ; Trescases, O.</creatorcontrib><description>This work demonstrates a predictive power optimization algorithm to control the power mix in a hybrid energy storage system, consisting of an ultracapacitor module and a lithium-ion battery pack for light electric vehicle applications. The algorithm uses a state-based approach, organized as a probability-weighted Markov process to predict future load demands. Decisions on power sharing are made in real-time, based on the predictions and probabilities of state trajectories along with associated system losses. A real-time global optimizer is then used to control the appropriate power mix using dc-dc converters. The full hybrid storage system, along with the mechanical drivetrain is implemented and validated experimentally on a 350 W, 50 V system with a programmable drive-cycle having a strong regenerative component. It is shown that the HESS system runs more efficiently and captures the excess regenerative energy that is otherwise dissipated in the mechanical brakes due to the battery's limited charge current capability.</description><identifier>ISSN: 2329-3721</identifier><identifier>ISBN: 1457705427</identifier><identifier>ISBN: 9781457705427</identifier><identifier>EISSN: 2329-3748</identifier><identifier>EISBN: 9781457705403</identifier><identifier>EISBN: 9781457705410</identifier><identifier>EISBN: 1457705419</identifier><identifier>EISBN: 1457705400</identifier><identifier>DOI: 10.1109/ECCE.2011.6064161</identifier><language>eng</language><publisher>IEEE</publisher><subject>Batteries ; Battery converter output current [A] ; Battery converter output current command [A] ; Battery equivalent series resistance [Ω] ; Battery internal current [A] ; Battery internal voltage [V] ; Battery parallel leakage current [A] ; Battery parallel resistance [Ω] ; Battery terminal current [A] ; Battery terminal voltage [V] ; Discharges ; Integrated circuit modeling ; Load current [A] ; Load modeling ; Prediction algorithms ; System bus voltage [V] ; System-on-a-chip ; U-cap converter output current [A] ; U-cap converter output current command [A] ; U-cap internal current [A] ; U-cap internal series resistance [Ω] ; U-cap internal voltage [V] ; U-cap parallel leakage current [A] ; U-cap parallel resistance [Ω] ; U-cap terminal current [A] ; U-cap terminal voltage [V] ; Ultra-capacitor equivalent series resistance [Ω]</subject><ispartof>2011 IEEE Energy Conversion Congress and Exposition, 2011, p.2916-2922</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6064161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6064161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Laldin, O.</creatorcontrib><creatorcontrib>Moshirvaziri, M.</creatorcontrib><creatorcontrib>Trescases, O.</creatorcontrib><title>Optimal power flow for hybrid ultracapacitor systems in light electric vehicles</title><title>2011 IEEE Energy Conversion Congress and Exposition</title><addtitle>ECCE</addtitle><description>This work demonstrates a predictive power optimization algorithm to control the power mix in a hybrid energy storage system, consisting of an ultracapacitor module and a lithium-ion battery pack for light electric vehicle applications. The algorithm uses a state-based approach, organized as a probability-weighted Markov process to predict future load demands. Decisions on power sharing are made in real-time, based on the predictions and probabilities of state trajectories along with associated system losses. A real-time global optimizer is then used to control the appropriate power mix using dc-dc converters. The full hybrid storage system, along with the mechanical drivetrain is implemented and validated experimentally on a 350 W, 50 V system with a programmable drive-cycle having a strong regenerative component. It is shown that the HESS system runs more efficiently and captures the excess regenerative energy that is otherwise dissipated in the mechanical brakes due to the battery's limited charge current capability.</description><subject>Batteries</subject><subject>Battery converter output current [A]</subject><subject>Battery converter output current command [A]</subject><subject>Battery equivalent series resistance [Ω]</subject><subject>Battery internal current [A]</subject><subject>Battery internal voltage [V]</subject><subject>Battery parallel leakage current [A]</subject><subject>Battery parallel resistance [Ω]</subject><subject>Battery terminal current [A]</subject><subject>Battery terminal voltage [V]</subject><subject>Discharges</subject><subject>Integrated circuit modeling</subject><subject>Load current [A]</subject><subject>Load modeling</subject><subject>Prediction algorithms</subject><subject>System bus voltage [V]</subject><subject>System-on-a-chip</subject><subject>U-cap converter output current [A]</subject><subject>U-cap converter output current command [A]</subject><subject>U-cap internal current [A]</subject><subject>U-cap internal series resistance [Ω]</subject><subject>U-cap internal voltage [V]</subject><subject>U-cap parallel leakage current [A]</subject><subject>U-cap parallel resistance [Ω]</subject><subject>U-cap terminal current [A]</subject><subject>U-cap terminal voltage [V]</subject><subject>Ultra-capacitor equivalent series resistance [Ω]</subject><issn>2329-3721</issn><issn>2329-3748</issn><isbn>1457705427</isbn><isbn>9781457705427</isbn><isbn>9781457705403</isbn><isbn>9781457705410</isbn><isbn>1457705419</isbn><isbn>1457705400</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM9KAzEYxOM_sNY-gHjJC-z6fUk2yR5laVUo9KLnkk2yNpLaJYmWvr0Fq6eB-Q0DM4TcIdSI0D7Mu25eM0CsJUiBEs_IrFUaRaMUNAL4OZkwztqKK6EvyM0fYOryHzC8JrOcPwAApWYacEJWq7GErYl03O19okPc7emwS3Rz6FNw9CuWZKwZjQ3l6OZDLn6bafikMbxvCvXR25KCpd9-E2z0-ZZcDSZmPzvplLwt5q_dc7VcPb10j8sqoGpK1bYorNeC9wYZOCaxB8kG7axi0rjGCMCm50Yr02rR9wOiRXdMKOYcGMen5P63N3jv12M6bkiH9ekb_gPLMVQ6</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Laldin, O.</creator><creator>Moshirvaziri, M.</creator><creator>Trescases, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Optimal power flow for hybrid ultracapacitor systems in light electric vehicles</title><author>Laldin, O. ; Moshirvaziri, M. ; Trescases, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9914ce843ba120d261b062f8dc726ad5a4015b3a87a984bbf11c1d62f72dd0ad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Batteries</topic><topic>Battery converter output current [A]</topic><topic>Battery converter output current command [A]</topic><topic>Battery equivalent series resistance [Ω]</topic><topic>Battery internal current [A]</topic><topic>Battery internal voltage [V]</topic><topic>Battery parallel leakage current [A]</topic><topic>Battery parallel resistance [Ω]</topic><topic>Battery terminal current [A]</topic><topic>Battery terminal voltage [V]</topic><topic>Discharges</topic><topic>Integrated circuit modeling</topic><topic>Load current [A]</topic><topic>Load modeling</topic><topic>Prediction algorithms</topic><topic>System bus voltage [V]</topic><topic>System-on-a-chip</topic><topic>U-cap converter output current [A]</topic><topic>U-cap converter output current command [A]</topic><topic>U-cap internal current [A]</topic><topic>U-cap internal series resistance [Ω]</topic><topic>U-cap internal voltage [V]</topic><topic>U-cap parallel leakage current [A]</topic><topic>U-cap parallel resistance [Ω]</topic><topic>U-cap terminal current [A]</topic><topic>U-cap terminal voltage [V]</topic><topic>Ultra-capacitor equivalent series resistance [Ω]</topic><toplevel>online_resources</toplevel><creatorcontrib>Laldin, O.</creatorcontrib><creatorcontrib>Moshirvaziri, M.</creatorcontrib><creatorcontrib>Trescases, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laldin, O.</au><au>Moshirvaziri, M.</au><au>Trescases, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal power flow for hybrid ultracapacitor systems in light electric vehicles</atitle><btitle>2011 IEEE Energy Conversion Congress and Exposition</btitle><stitle>ECCE</stitle><date>2011-09</date><risdate>2011</risdate><spage>2916</spage><epage>2922</epage><pages>2916-2922</pages><issn>2329-3721</issn><eissn>2329-3748</eissn><isbn>1457705427</isbn><isbn>9781457705427</isbn><eisbn>9781457705403</eisbn><eisbn>9781457705410</eisbn><eisbn>1457705419</eisbn><eisbn>1457705400</eisbn><abstract>This work demonstrates a predictive power optimization algorithm to control the power mix in a hybrid energy storage system, consisting of an ultracapacitor module and a lithium-ion battery pack for light electric vehicle applications. The algorithm uses a state-based approach, organized as a probability-weighted Markov process to predict future load demands. Decisions on power sharing are made in real-time, based on the predictions and probabilities of state trajectories along with associated system losses. A real-time global optimizer is then used to control the appropriate power mix using dc-dc converters. The full hybrid storage system, along with the mechanical drivetrain is implemented and validated experimentally on a 350 W, 50 V system with a programmable drive-cycle having a strong regenerative component. It is shown that the HESS system runs more efficiently and captures the excess regenerative energy that is otherwise dissipated in the mechanical brakes due to the battery's limited charge current capability.</abstract><pub>IEEE</pub><doi>10.1109/ECCE.2011.6064161</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-3721
ispartof 2011 IEEE Energy Conversion Congress and Exposition, 2011, p.2916-2922
issn 2329-3721
2329-3748
language eng
recordid cdi_ieee_primary_6064161
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Batteries
Battery converter output current [A]
Battery converter output current command [A]
Battery equivalent series resistance [Ω]
Battery internal current [A]
Battery internal voltage [V]
Battery parallel leakage current [A]
Battery parallel resistance [Ω]
Battery terminal current [A]
Battery terminal voltage [V]
Discharges
Integrated circuit modeling
Load current [A]
Load modeling
Prediction algorithms
System bus voltage [V]
System-on-a-chip
U-cap converter output current [A]
U-cap converter output current command [A]
U-cap internal current [A]
U-cap internal series resistance [Ω]
U-cap internal voltage [V]
U-cap parallel leakage current [A]
U-cap parallel resistance [Ω]
U-cap terminal current [A]
U-cap terminal voltage [V]
Ultra-capacitor equivalent series resistance [Ω]
title Optimal power flow for hybrid ultracapacitor systems in light electric vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20power%20flow%20for%20hybrid%20ultracapacitor%20systems%20in%20light%20electric%20vehicles&rft.btitle=2011%20IEEE%20Energy%20Conversion%20Congress%20and%20Exposition&rft.au=Laldin,%20O.&rft.date=2011-09&rft.spage=2916&rft.epage=2922&rft.pages=2916-2922&rft.issn=2329-3721&rft.eissn=2329-3748&rft.isbn=1457705427&rft.isbn_list=9781457705427&rft_id=info:doi/10.1109/ECCE.2011.6064161&rft_dat=%3Cieee_6IE%3E6064161%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457705403&rft.eisbn_list=9781457705410&rft.eisbn_list=1457705419&rft.eisbn_list=1457705400&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6064161&rfr_iscdi=true