Broken bar fault diagnosis of induction motors using MCSA and neural network

Early detection and diagnosis of incipient faults are desirable to ensure an operational effectiveness improved of an induction motors. A novel practical detection and classification method, using motor current signature analysis (MCSA) associated with a neural technique is developed to detect rotor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guedidi, S., Zouzou, S. E., Laala, W., Sahraoui, M., Yahia, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 637
container_issue
container_start_page 632
container_title
container_volume
creator Guedidi, S.
Zouzou, S. E.
Laala, W.
Sahraoui, M.
Yahia, K.
description Early detection and diagnosis of incipient faults are desirable to ensure an operational effectiveness improved of an induction motors. A novel practical detection and classification method, using motor current signature analysis (MCSA) associated with a neural technique is developed to detect rotor broken bar faults. In this method, only one phase current is used. Following current spectrum study on hundreds of experimental observations, it was established that the mixed eccentricity harmonic f ecc_mix has the largest amplitude around the fundamental, under different loads and state (healthy or defective). However f ecc_mix is related to the slip and the mechanical rotational frequency. It becomes obvious that the detection of the rotor broken bars harmonic is made easy. The amplitude of this harmonic and the slip (detection criterion) are used as the neural network inputs. The last provides reliably, its decision on the state of the machine. Experimental results prove the efficiency of the proposed method.
doi_str_mv 10.1109/DEMPED.2011.6063690
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6063690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6063690</ieee_id><sourcerecordid>6063690</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-387a2f6e7da57063a1b7358f0fa609c51cab802b14e2585e6a7e4ef3d7912c4d3</originalsourceid><addsrcrecordid>eNo1j91KwzAcxSMiqLNPsJu8QGu-mjSXc6tT6FBw9-PfNhlxXSJJi_j2Fpzn5seBw-EchJaUFJQS_bipd-_1pmCE0kISyaUmVyjTqqKCCaE5Yfoa3f8bym9RltInmSXnaCXuUPMUw8l43ELEFqZhxL2Dow_JJRwsdr6futEFj89hDDHhKTl_xLv1xwqD77E3U4Rhxvgd4ukB3VgYkskuXKD9c71fv-TN2_Z1vWpyp8mY80oBs9KoHko1jwbaKl5WlliQRHcl7aCtCGupMKysSiNBGWEs75WmrBM9X6DlX60zxhy-ojtD_Dlc_vNfAjdOxA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Broken bar fault diagnosis of induction motors using MCSA and neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guedidi, S. ; Zouzou, S. E. ; Laala, W. ; Sahraoui, M. ; Yahia, K.</creator><creatorcontrib>Guedidi, S. ; Zouzou, S. E. ; Laala, W. ; Sahraoui, M. ; Yahia, K.</creatorcontrib><description>Early detection and diagnosis of incipient faults are desirable to ensure an operational effectiveness improved of an induction motors. A novel practical detection and classification method, using motor current signature analysis (MCSA) associated with a neural technique is developed to detect rotor broken bar faults. In this method, only one phase current is used. Following current spectrum study on hundreds of experimental observations, it was established that the mixed eccentricity harmonic f ecc_mix has the largest amplitude around the fundamental, under different loads and state (healthy or defective). However f ecc_mix is related to the slip and the mechanical rotational frequency. It becomes obvious that the detection of the rotor broken bars harmonic is made easy. The amplitude of this harmonic and the slip (detection criterion) are used as the neural network inputs. The last provides reliably, its decision on the state of the machine. Experimental results prove the efficiency of the proposed method.</description><identifier>ISBN: 1424493013</identifier><identifier>ISBN: 9781424493012</identifier><identifier>EISBN: 9781424493029</identifier><identifier>EISBN: 9781424493036</identifier><identifier>EISBN: 1424493021</identifier><identifier>EISBN: 142449303X</identifier><identifier>DOI: 10.1109/DEMPED.2011.6063690</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bars ; Biological neural networks ; broken bars ; diagnosis ; Digital signal processing ; Harmonic analysis ; Induction motor ; Induction motors ; Motor current signature analysis ; Neural networks ; Reliability ; Rotors ; Stators</subject><ispartof>8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics &amp; Drives, 2011, p.632-637</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6063690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6063690$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guedidi, S.</creatorcontrib><creatorcontrib>Zouzou, S. E.</creatorcontrib><creatorcontrib>Laala, W.</creatorcontrib><creatorcontrib>Sahraoui, M.</creatorcontrib><creatorcontrib>Yahia, K.</creatorcontrib><title>Broken bar fault diagnosis of induction motors using MCSA and neural network</title><title>8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics &amp; Drives</title><addtitle>DEMPED</addtitle><description>Early detection and diagnosis of incipient faults are desirable to ensure an operational effectiveness improved of an induction motors. A novel practical detection and classification method, using motor current signature analysis (MCSA) associated with a neural technique is developed to detect rotor broken bar faults. In this method, only one phase current is used. Following current spectrum study on hundreds of experimental observations, it was established that the mixed eccentricity harmonic f ecc_mix has the largest amplitude around the fundamental, under different loads and state (healthy or defective). However f ecc_mix is related to the slip and the mechanical rotational frequency. It becomes obvious that the detection of the rotor broken bars harmonic is made easy. The amplitude of this harmonic and the slip (detection criterion) are used as the neural network inputs. The last provides reliably, its decision on the state of the machine. Experimental results prove the efficiency of the proposed method.</description><subject>Bars</subject><subject>Biological neural networks</subject><subject>broken bars</subject><subject>diagnosis</subject><subject>Digital signal processing</subject><subject>Harmonic analysis</subject><subject>Induction motor</subject><subject>Induction motors</subject><subject>Motor current signature analysis</subject><subject>Neural networks</subject><subject>Reliability</subject><subject>Rotors</subject><subject>Stators</subject><isbn>1424493013</isbn><isbn>9781424493012</isbn><isbn>9781424493029</isbn><isbn>9781424493036</isbn><isbn>1424493021</isbn><isbn>142449303X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91KwzAcxSMiqLNPsJu8QGu-mjSXc6tT6FBw9-PfNhlxXSJJi_j2Fpzn5seBw-EchJaUFJQS_bipd-_1pmCE0kISyaUmVyjTqqKCCaE5Yfoa3f8bym9RltInmSXnaCXuUPMUw8l43ELEFqZhxL2Dow_JJRwsdr6futEFj89hDDHhKTl_xLv1xwqD77E3U4Rhxvgd4ukB3VgYkskuXKD9c71fv-TN2_Z1vWpyp8mY80oBs9KoHko1jwbaKl5WlliQRHcl7aCtCGupMKysSiNBGWEs75WmrBM9X6DlX60zxhy-ojtD_Dlc_vNfAjdOxA</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Guedidi, S.</creator><creator>Zouzou, S. E.</creator><creator>Laala, W.</creator><creator>Sahraoui, M.</creator><creator>Yahia, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Broken bar fault diagnosis of induction motors using MCSA and neural network</title><author>Guedidi, S. ; Zouzou, S. E. ; Laala, W. ; Sahraoui, M. ; Yahia, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-387a2f6e7da57063a1b7358f0fa609c51cab802b14e2585e6a7e4ef3d7912c4d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bars</topic><topic>Biological neural networks</topic><topic>broken bars</topic><topic>diagnosis</topic><topic>Digital signal processing</topic><topic>Harmonic analysis</topic><topic>Induction motor</topic><topic>Induction motors</topic><topic>Motor current signature analysis</topic><topic>Neural networks</topic><topic>Reliability</topic><topic>Rotors</topic><topic>Stators</topic><toplevel>online_resources</toplevel><creatorcontrib>Guedidi, S.</creatorcontrib><creatorcontrib>Zouzou, S. E.</creatorcontrib><creatorcontrib>Laala, W.</creatorcontrib><creatorcontrib>Sahraoui, M.</creatorcontrib><creatorcontrib>Yahia, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guedidi, S.</au><au>Zouzou, S. E.</au><au>Laala, W.</au><au>Sahraoui, M.</au><au>Yahia, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Broken bar fault diagnosis of induction motors using MCSA and neural network</atitle><btitle>8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics &amp; Drives</btitle><stitle>DEMPED</stitle><date>2011-09</date><risdate>2011</risdate><spage>632</spage><epage>637</epage><pages>632-637</pages><isbn>1424493013</isbn><isbn>9781424493012</isbn><eisbn>9781424493029</eisbn><eisbn>9781424493036</eisbn><eisbn>1424493021</eisbn><eisbn>142449303X</eisbn><abstract>Early detection and diagnosis of incipient faults are desirable to ensure an operational effectiveness improved of an induction motors. A novel practical detection and classification method, using motor current signature analysis (MCSA) associated with a neural technique is developed to detect rotor broken bar faults. In this method, only one phase current is used. Following current spectrum study on hundreds of experimental observations, it was established that the mixed eccentricity harmonic f ecc_mix has the largest amplitude around the fundamental, under different loads and state (healthy or defective). However f ecc_mix is related to the slip and the mechanical rotational frequency. It becomes obvious that the detection of the rotor broken bars harmonic is made easy. The amplitude of this harmonic and the slip (detection criterion) are used as the neural network inputs. The last provides reliably, its decision on the state of the machine. Experimental results prove the efficiency of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/DEMPED.2011.6063690</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424493013
ispartof 8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives, 2011, p.632-637
issn
language eng
recordid cdi_ieee_primary_6063690
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bars
Biological neural networks
broken bars
diagnosis
Digital signal processing
Harmonic analysis
Induction motor
Induction motors
Motor current signature analysis
Neural networks
Reliability
Rotors
Stators
title Broken bar fault diagnosis of induction motors using MCSA and neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Broken%20bar%20fault%20diagnosis%20of%20induction%20motors%20using%20MCSA%20and%20neural%20network&rft.btitle=8th%20IEEE%20Symposium%20on%20Diagnostics%20for%20Electrical%20Machines,%20Power%20Electronics%20&%20Drives&rft.au=Guedidi,%20S.&rft.date=2011-09&rft.spage=632&rft.epage=637&rft.pages=632-637&rft.isbn=1424493013&rft.isbn_list=9781424493012&rft_id=info:doi/10.1109/DEMPED.2011.6063690&rft_dat=%3Cieee_6IE%3E6063690%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424493029&rft.eisbn_list=9781424493036&rft.eisbn_list=1424493021&rft.eisbn_list=142449303X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6063690&rfr_iscdi=true