Broken bar fault diagnosis of induction motors using MCSA and neural network
Early detection and diagnosis of incipient faults are desirable to ensure an operational effectiveness improved of an induction motors. A novel practical detection and classification method, using motor current signature analysis (MCSA) associated with a neural technique is developed to detect rotor...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 637 |
---|---|
container_issue | |
container_start_page | 632 |
container_title | |
container_volume | |
creator | Guedidi, S. Zouzou, S. E. Laala, W. Sahraoui, M. Yahia, K. |
description | Early detection and diagnosis of incipient faults are desirable to ensure an operational effectiveness improved of an induction motors. A novel practical detection and classification method, using motor current signature analysis (MCSA) associated with a neural technique is developed to detect rotor broken bar faults. In this method, only one phase current is used. Following current spectrum study on hundreds of experimental observations, it was established that the mixed eccentricity harmonic f ecc_mix has the largest amplitude around the fundamental, under different loads and state (healthy or defective). However f ecc_mix is related to the slip and the mechanical rotational frequency. It becomes obvious that the detection of the rotor broken bars harmonic is made easy. The amplitude of this harmonic and the slip (detection criterion) are used as the neural network inputs. The last provides reliably, its decision on the state of the machine. Experimental results prove the efficiency of the proposed method. |
doi_str_mv | 10.1109/DEMPED.2011.6063690 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6063690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6063690</ieee_id><sourcerecordid>6063690</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-387a2f6e7da57063a1b7358f0fa609c51cab802b14e2585e6a7e4ef3d7912c4d3</originalsourceid><addsrcrecordid>eNo1j91KwzAcxSMiqLNPsJu8QGu-mjSXc6tT6FBw9-PfNhlxXSJJi_j2Fpzn5seBw-EchJaUFJQS_bipd-_1pmCE0kISyaUmVyjTqqKCCaE5Yfoa3f8bym9RltInmSXnaCXuUPMUw8l43ELEFqZhxL2Dow_JJRwsdr6futEFj89hDDHhKTl_xLv1xwqD77E3U4Rhxvgd4ukB3VgYkskuXKD9c71fv-TN2_Z1vWpyp8mY80oBs9KoHko1jwbaKl5WlliQRHcl7aCtCGupMKysSiNBGWEs75WmrBM9X6DlX60zxhy-ojtD_Dlc_vNfAjdOxA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Broken bar fault diagnosis of induction motors using MCSA and neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guedidi, S. ; Zouzou, S. E. ; Laala, W. ; Sahraoui, M. ; Yahia, K.</creator><creatorcontrib>Guedidi, S. ; Zouzou, S. E. ; Laala, W. ; Sahraoui, M. ; Yahia, K.</creatorcontrib><description>Early detection and diagnosis of incipient faults are desirable to ensure an operational effectiveness improved of an induction motors. A novel practical detection and classification method, using motor current signature analysis (MCSA) associated with a neural technique is developed to detect rotor broken bar faults. In this method, only one phase current is used. Following current spectrum study on hundreds of experimental observations, it was established that the mixed eccentricity harmonic f ecc_mix has the largest amplitude around the fundamental, under different loads and state (healthy or defective). However f ecc_mix is related to the slip and the mechanical rotational frequency. It becomes obvious that the detection of the rotor broken bars harmonic is made easy. The amplitude of this harmonic and the slip (detection criterion) are used as the neural network inputs. The last provides reliably, its decision on the state of the machine. Experimental results prove the efficiency of the proposed method.</description><identifier>ISBN: 1424493013</identifier><identifier>ISBN: 9781424493012</identifier><identifier>EISBN: 9781424493029</identifier><identifier>EISBN: 9781424493036</identifier><identifier>EISBN: 1424493021</identifier><identifier>EISBN: 142449303X</identifier><identifier>DOI: 10.1109/DEMPED.2011.6063690</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bars ; Biological neural networks ; broken bars ; diagnosis ; Digital signal processing ; Harmonic analysis ; Induction motor ; Induction motors ; Motor current signature analysis ; Neural networks ; Reliability ; Rotors ; Stators</subject><ispartof>8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives, 2011, p.632-637</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6063690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6063690$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guedidi, S.</creatorcontrib><creatorcontrib>Zouzou, S. E.</creatorcontrib><creatorcontrib>Laala, W.</creatorcontrib><creatorcontrib>Sahraoui, M.</creatorcontrib><creatorcontrib>Yahia, K.</creatorcontrib><title>Broken bar fault diagnosis of induction motors using MCSA and neural network</title><title>8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives</title><addtitle>DEMPED</addtitle><description>Early detection and diagnosis of incipient faults are desirable to ensure an operational effectiveness improved of an induction motors. A novel practical detection and classification method, using motor current signature analysis (MCSA) associated with a neural technique is developed to detect rotor broken bar faults. In this method, only one phase current is used. Following current spectrum study on hundreds of experimental observations, it was established that the mixed eccentricity harmonic f ecc_mix has the largest amplitude around the fundamental, under different loads and state (healthy or defective). However f ecc_mix is related to the slip and the mechanical rotational frequency. It becomes obvious that the detection of the rotor broken bars harmonic is made easy. The amplitude of this harmonic and the slip (detection criterion) are used as the neural network inputs. The last provides reliably, its decision on the state of the machine. Experimental results prove the efficiency of the proposed method.</description><subject>Bars</subject><subject>Biological neural networks</subject><subject>broken bars</subject><subject>diagnosis</subject><subject>Digital signal processing</subject><subject>Harmonic analysis</subject><subject>Induction motor</subject><subject>Induction motors</subject><subject>Motor current signature analysis</subject><subject>Neural networks</subject><subject>Reliability</subject><subject>Rotors</subject><subject>Stators</subject><isbn>1424493013</isbn><isbn>9781424493012</isbn><isbn>9781424493029</isbn><isbn>9781424493036</isbn><isbn>1424493021</isbn><isbn>142449303X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91KwzAcxSMiqLNPsJu8QGu-mjSXc6tT6FBw9-PfNhlxXSJJi_j2Fpzn5seBw-EchJaUFJQS_bipd-_1pmCE0kISyaUmVyjTqqKCCaE5Yfoa3f8bym9RltInmSXnaCXuUPMUw8l43ELEFqZhxL2Dow_JJRwsdr6futEFj89hDDHhKTl_xLv1xwqD77E3U4Rhxvgd4ukB3VgYkskuXKD9c71fv-TN2_Z1vWpyp8mY80oBs9KoHko1jwbaKl5WlliQRHcl7aCtCGupMKysSiNBGWEs75WmrBM9X6DlX60zxhy-ojtD_Dlc_vNfAjdOxA</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Guedidi, S.</creator><creator>Zouzou, S. E.</creator><creator>Laala, W.</creator><creator>Sahraoui, M.</creator><creator>Yahia, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Broken bar fault diagnosis of induction motors using MCSA and neural network</title><author>Guedidi, S. ; Zouzou, S. E. ; Laala, W. ; Sahraoui, M. ; Yahia, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-387a2f6e7da57063a1b7358f0fa609c51cab802b14e2585e6a7e4ef3d7912c4d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bars</topic><topic>Biological neural networks</topic><topic>broken bars</topic><topic>diagnosis</topic><topic>Digital signal processing</topic><topic>Harmonic analysis</topic><topic>Induction motor</topic><topic>Induction motors</topic><topic>Motor current signature analysis</topic><topic>Neural networks</topic><topic>Reliability</topic><topic>Rotors</topic><topic>Stators</topic><toplevel>online_resources</toplevel><creatorcontrib>Guedidi, S.</creatorcontrib><creatorcontrib>Zouzou, S. E.</creatorcontrib><creatorcontrib>Laala, W.</creatorcontrib><creatorcontrib>Sahraoui, M.</creatorcontrib><creatorcontrib>Yahia, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guedidi, S.</au><au>Zouzou, S. E.</au><au>Laala, W.</au><au>Sahraoui, M.</au><au>Yahia, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Broken bar fault diagnosis of induction motors using MCSA and neural network</atitle><btitle>8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives</btitle><stitle>DEMPED</stitle><date>2011-09</date><risdate>2011</risdate><spage>632</spage><epage>637</epage><pages>632-637</pages><isbn>1424493013</isbn><isbn>9781424493012</isbn><eisbn>9781424493029</eisbn><eisbn>9781424493036</eisbn><eisbn>1424493021</eisbn><eisbn>142449303X</eisbn><abstract>Early detection and diagnosis of incipient faults are desirable to ensure an operational effectiveness improved of an induction motors. A novel practical detection and classification method, using motor current signature analysis (MCSA) associated with a neural technique is developed to detect rotor broken bar faults. In this method, only one phase current is used. Following current spectrum study on hundreds of experimental observations, it was established that the mixed eccentricity harmonic f ecc_mix has the largest amplitude around the fundamental, under different loads and state (healthy or defective). However f ecc_mix is related to the slip and the mechanical rotational frequency. It becomes obvious that the detection of the rotor broken bars harmonic is made easy. The amplitude of this harmonic and the slip (detection criterion) are used as the neural network inputs. The last provides reliably, its decision on the state of the machine. Experimental results prove the efficiency of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/DEMPED.2011.6063690</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424493013 |
ispartof | 8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives, 2011, p.632-637 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6063690 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bars Biological neural networks broken bars diagnosis Digital signal processing Harmonic analysis Induction motor Induction motors Motor current signature analysis Neural networks Reliability Rotors Stators |
title | Broken bar fault diagnosis of induction motors using MCSA and neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Broken%20bar%20fault%20diagnosis%20of%20induction%20motors%20using%20MCSA%20and%20neural%20network&rft.btitle=8th%20IEEE%20Symposium%20on%20Diagnostics%20for%20Electrical%20Machines,%20Power%20Electronics%20&%20Drives&rft.au=Guedidi,%20S.&rft.date=2011-09&rft.spage=632&rft.epage=637&rft.pages=632-637&rft.isbn=1424493013&rft.isbn_list=9781424493012&rft_id=info:doi/10.1109/DEMPED.2011.6063690&rft_dat=%3Cieee_6IE%3E6063690%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424493029&rft.eisbn_list=9781424493036&rft.eisbn_list=1424493021&rft.eisbn_list=142449303X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6063690&rfr_iscdi=true |