Powering Smart Home Intelligence Using Existing Entertainment Systems

Smart Homes and Smart Environments are classically centrally organized and utilize methods from machine learning and artificial intelligence. In recent years, continuous progress has been made and the technology has reached a level where the deployment becomes feasible on a larger scale and in every...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Scholz, M., Flehmig, G., Schmidtke, H. R., Scholz, G. H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue
container_start_page 230
container_title
container_volume
creator Scholz, M.
Flehmig, G.
Schmidtke, H. R.
Scholz, G. H.
description Smart Homes and Smart Environments are classically centrally organized and utilize methods from machine learning and artificial intelligence. In recent years, continuous progress has been made and the technology has reached a level where the deployment becomes feasible on a larger scale and in everyday settings, raising the question where the central system should be deployed. In this paper, we propose the use of existing entertainment systems as the Smart Home controller. In a case study we examine the performance of the multi-core Cell processor of the Sony PlayStation 3 for training artificial feed forward neural networks using specifically adapted parallel training strategies. The evaluation of these strategies shows a gain in speed of up to 6.6 over a sequential implementation on a single processing element of the Cell. Based on these findings and related work we suggest that home entertainment systems should be considered as possible powerful, deployment platforms for future Smart Home systems.
doi_str_mv 10.1109/IE.2011.10
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6063390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6063390</ieee_id><sourcerecordid>6063390</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1e89a30002e93c8c298265916d5022f16fd840b17e1fd329dc7ece94841668ab3</originalsourceid><addsrcrecordid>eNotjs1Lw0AUxFdE0NZevHrJP5D63n683T1KiTZQUGg9lzR5KStJKtkF7X9v_JjLDPxgZoS4Q1gign8oi6UExCXChZiBJW-0NtJcihlqYy04BfJaLGJ8h0lE3hq6EcXr6ZPHMByzbV-NKVufes7KIXHXhSMPNWdv8YcWXyGm3zCxMVVh6HlI2fYcE_fxVly1VRd58e9zsXsqdqt1vnl5LlePmzx4SDmy85WaxiV7VbtaeifJeKTGgJQtUts4DQe0jG2jpG9qyzV77TQSueqg5uL-rzYw8_5jDNPl856AlPKgvgG08klI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Powering Smart Home Intelligence Using Existing Entertainment Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Scholz, M. ; Flehmig, G. ; Schmidtke, H. R. ; Scholz, G. H.</creator><creatorcontrib>Scholz, M. ; Flehmig, G. ; Schmidtke, H. R. ; Scholz, G. H.</creatorcontrib><description>Smart Homes and Smart Environments are classically centrally organized and utilize methods from machine learning and artificial intelligence. In recent years, continuous progress has been made and the technology has reached a level where the deployment becomes feasible on a larger scale and in everyday settings, raising the question where the central system should be deployed. In this paper, we propose the use of existing entertainment systems as the Smart Home controller. In a case study we examine the performance of the multi-core Cell processor of the Sony PlayStation 3 for training artificial feed forward neural networks using specifically adapted parallel training strategies. The evaluation of these strategies shows a gain in speed of up to 6.6 over a sequential implementation on a single processing element of the Cell. Based on these findings and related work we suggest that home entertainment systems should be considered as possible powerful, deployment platforms for future Smart Home systems.</description><identifier>ISBN: 1457708302</identifier><identifier>ISBN: 9781457708305</identifier><identifier>EISBN: 0769544525</identifier><identifier>EISBN: 9780769544526</identifier><identifier>DOI: 10.1109/IE.2011.10</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Hardware ; Microprocessors ; Parallel processing ; Random access memory ; Smart homes ; Training</subject><ispartof>2011 Seventh International Conference on Intelligent Environments, 2011, p.230-237</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6063390$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6063390$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Flehmig, G.</creatorcontrib><creatorcontrib>Schmidtke, H. R.</creatorcontrib><creatorcontrib>Scholz, G. H.</creatorcontrib><title>Powering Smart Home Intelligence Using Existing Entertainment Systems</title><title>2011 Seventh International Conference on Intelligent Environments</title><addtitle>ie</addtitle><description>Smart Homes and Smart Environments are classically centrally organized and utilize methods from machine learning and artificial intelligence. In recent years, continuous progress has been made and the technology has reached a level where the deployment becomes feasible on a larger scale and in everyday settings, raising the question where the central system should be deployed. In this paper, we propose the use of existing entertainment systems as the Smart Home controller. In a case study we examine the performance of the multi-core Cell processor of the Sony PlayStation 3 for training artificial feed forward neural networks using specifically adapted parallel training strategies. The evaluation of these strategies shows a gain in speed of up to 6.6 over a sequential implementation on a single processing element of the Cell. Based on these findings and related work we suggest that home entertainment systems should be considered as possible powerful, deployment platforms for future Smart Home systems.</description><subject>Computer architecture</subject><subject>Hardware</subject><subject>Microprocessors</subject><subject>Parallel processing</subject><subject>Random access memory</subject><subject>Smart homes</subject><subject>Training</subject><isbn>1457708302</isbn><isbn>9781457708305</isbn><isbn>0769544525</isbn><isbn>9780769544526</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjs1Lw0AUxFdE0NZevHrJP5D63n683T1KiTZQUGg9lzR5KStJKtkF7X9v_JjLDPxgZoS4Q1gign8oi6UExCXChZiBJW-0NtJcihlqYy04BfJaLGJ8h0lE3hq6EcXr6ZPHMByzbV-NKVufes7KIXHXhSMPNWdv8YcWXyGm3zCxMVVh6HlI2fYcE_fxVly1VRd58e9zsXsqdqt1vnl5LlePmzx4SDmy85WaxiV7VbtaeifJeKTGgJQtUts4DQe0jG2jpG9qyzV77TQSueqg5uL-rzYw8_5jDNPl856AlPKgvgG08klI</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Scholz, M.</creator><creator>Flehmig, G.</creator><creator>Schmidtke, H. R.</creator><creator>Scholz, G. H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Powering Smart Home Intelligence Using Existing Entertainment Systems</title><author>Scholz, M. ; Flehmig, G. ; Schmidtke, H. R. ; Scholz, G. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1e89a30002e93c8c298265916d5022f16fd840b17e1fd329dc7ece94841668ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer architecture</topic><topic>Hardware</topic><topic>Microprocessors</topic><topic>Parallel processing</topic><topic>Random access memory</topic><topic>Smart homes</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Flehmig, G.</creatorcontrib><creatorcontrib>Schmidtke, H. R.</creatorcontrib><creatorcontrib>Scholz, G. H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scholz, M.</au><au>Flehmig, G.</au><au>Schmidtke, H. R.</au><au>Scholz, G. H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Powering Smart Home Intelligence Using Existing Entertainment Systems</atitle><btitle>2011 Seventh International Conference on Intelligent Environments</btitle><stitle>ie</stitle><date>2011-07</date><risdate>2011</risdate><spage>230</spage><epage>237</epage><pages>230-237</pages><isbn>1457708302</isbn><isbn>9781457708305</isbn><eisbn>0769544525</eisbn><eisbn>9780769544526</eisbn><abstract>Smart Homes and Smart Environments are classically centrally organized and utilize methods from machine learning and artificial intelligence. In recent years, continuous progress has been made and the technology has reached a level where the deployment becomes feasible on a larger scale and in everyday settings, raising the question where the central system should be deployed. In this paper, we propose the use of existing entertainment systems as the Smart Home controller. In a case study we examine the performance of the multi-core Cell processor of the Sony PlayStation 3 for training artificial feed forward neural networks using specifically adapted parallel training strategies. The evaluation of these strategies shows a gain in speed of up to 6.6 over a sequential implementation on a single processing element of the Cell. Based on these findings and related work we suggest that home entertainment systems should be considered as possible powerful, deployment platforms for future Smart Home systems.</abstract><pub>IEEE</pub><doi>10.1109/IE.2011.10</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457708302
ispartof 2011 Seventh International Conference on Intelligent Environments, 2011, p.230-237
issn
language eng
recordid cdi_ieee_primary_6063390
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer architecture
Hardware
Microprocessors
Parallel processing
Random access memory
Smart homes
Training
title Powering Smart Home Intelligence Using Existing Entertainment Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Powering%20Smart%20Home%20Intelligence%20Using%20Existing%20Entertainment%20Systems&rft.btitle=2011%20Seventh%20International%20Conference%20on%20Intelligent%20Environments&rft.au=Scholz,%20M.&rft.date=2011-07&rft.spage=230&rft.epage=237&rft.pages=230-237&rft.isbn=1457708302&rft.isbn_list=9781457708305&rft_id=info:doi/10.1109/IE.2011.10&rft_dat=%3Cieee_6IE%3E6063390%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769544525&rft.eisbn_list=9780769544526&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6063390&rfr_iscdi=true