Powering Smart Home Intelligence Using Existing Entertainment Systems
Smart Homes and Smart Environments are classically centrally organized and utilize methods from machine learning and artificial intelligence. In recent years, continuous progress has been made and the technology has reached a level where the deployment becomes feasible on a larger scale and in every...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | |
container_start_page | 230 |
container_title | |
container_volume | |
creator | Scholz, M. Flehmig, G. Schmidtke, H. R. Scholz, G. H. |
description | Smart Homes and Smart Environments are classically centrally organized and utilize methods from machine learning and artificial intelligence. In recent years, continuous progress has been made and the technology has reached a level where the deployment becomes feasible on a larger scale and in everyday settings, raising the question where the central system should be deployed. In this paper, we propose the use of existing entertainment systems as the Smart Home controller. In a case study we examine the performance of the multi-core Cell processor of the Sony PlayStation 3 for training artificial feed forward neural networks using specifically adapted parallel training strategies. The evaluation of these strategies shows a gain in speed of up to 6.6 over a sequential implementation on a single processing element of the Cell. Based on these findings and related work we suggest that home entertainment systems should be considered as possible powerful, deployment platforms for future Smart Home systems. |
doi_str_mv | 10.1109/IE.2011.10 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6063390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6063390</ieee_id><sourcerecordid>6063390</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1e89a30002e93c8c298265916d5022f16fd840b17e1fd329dc7ece94841668ab3</originalsourceid><addsrcrecordid>eNotjs1Lw0AUxFdE0NZevHrJP5D63n683T1KiTZQUGg9lzR5KStJKtkF7X9v_JjLDPxgZoS4Q1gign8oi6UExCXChZiBJW-0NtJcihlqYy04BfJaLGJ8h0lE3hq6EcXr6ZPHMByzbV-NKVufes7KIXHXhSMPNWdv8YcWXyGm3zCxMVVh6HlI2fYcE_fxVly1VRd58e9zsXsqdqt1vnl5LlePmzx4SDmy85WaxiV7VbtaeifJeKTGgJQtUts4DQe0jG2jpG9qyzV77TQSueqg5uL-rzYw8_5jDNPl856AlPKgvgG08klI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Powering Smart Home Intelligence Using Existing Entertainment Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Scholz, M. ; Flehmig, G. ; Schmidtke, H. R. ; Scholz, G. H.</creator><creatorcontrib>Scholz, M. ; Flehmig, G. ; Schmidtke, H. R. ; Scholz, G. H.</creatorcontrib><description>Smart Homes and Smart Environments are classically centrally organized and utilize methods from machine learning and artificial intelligence. In recent years, continuous progress has been made and the technology has reached a level where the deployment becomes feasible on a larger scale and in everyday settings, raising the question where the central system should be deployed. In this paper, we propose the use of existing entertainment systems as the Smart Home controller. In a case study we examine the performance of the multi-core Cell processor of the Sony PlayStation 3 for training artificial feed forward neural networks using specifically adapted parallel training strategies. The evaluation of these strategies shows a gain in speed of up to 6.6 over a sequential implementation on a single processing element of the Cell. Based on these findings and related work we suggest that home entertainment systems should be considered as possible powerful, deployment platforms for future Smart Home systems.</description><identifier>ISBN: 1457708302</identifier><identifier>ISBN: 9781457708305</identifier><identifier>EISBN: 0769544525</identifier><identifier>EISBN: 9780769544526</identifier><identifier>DOI: 10.1109/IE.2011.10</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Hardware ; Microprocessors ; Parallel processing ; Random access memory ; Smart homes ; Training</subject><ispartof>2011 Seventh International Conference on Intelligent Environments, 2011, p.230-237</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6063390$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6063390$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Flehmig, G.</creatorcontrib><creatorcontrib>Schmidtke, H. R.</creatorcontrib><creatorcontrib>Scholz, G. H.</creatorcontrib><title>Powering Smart Home Intelligence Using Existing Entertainment Systems</title><title>2011 Seventh International Conference on Intelligent Environments</title><addtitle>ie</addtitle><description>Smart Homes and Smart Environments are classically centrally organized and utilize methods from machine learning and artificial intelligence. In recent years, continuous progress has been made and the technology has reached a level where the deployment becomes feasible on a larger scale and in everyday settings, raising the question where the central system should be deployed. In this paper, we propose the use of existing entertainment systems as the Smart Home controller. In a case study we examine the performance of the multi-core Cell processor of the Sony PlayStation 3 for training artificial feed forward neural networks using specifically adapted parallel training strategies. The evaluation of these strategies shows a gain in speed of up to 6.6 over a sequential implementation on a single processing element of the Cell. Based on these findings and related work we suggest that home entertainment systems should be considered as possible powerful, deployment platforms for future Smart Home systems.</description><subject>Computer architecture</subject><subject>Hardware</subject><subject>Microprocessors</subject><subject>Parallel processing</subject><subject>Random access memory</subject><subject>Smart homes</subject><subject>Training</subject><isbn>1457708302</isbn><isbn>9781457708305</isbn><isbn>0769544525</isbn><isbn>9780769544526</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjs1Lw0AUxFdE0NZevHrJP5D63n683T1KiTZQUGg9lzR5KStJKtkF7X9v_JjLDPxgZoS4Q1gign8oi6UExCXChZiBJW-0NtJcihlqYy04BfJaLGJ8h0lE3hq6EcXr6ZPHMByzbV-NKVufes7KIXHXhSMPNWdv8YcWXyGm3zCxMVVh6HlI2fYcE_fxVly1VRd58e9zsXsqdqt1vnl5LlePmzx4SDmy85WaxiV7VbtaeifJeKTGgJQtUts4DQe0jG2jpG9qyzV77TQSueqg5uL-rzYw8_5jDNPl856AlPKgvgG08klI</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Scholz, M.</creator><creator>Flehmig, G.</creator><creator>Schmidtke, H. R.</creator><creator>Scholz, G. H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Powering Smart Home Intelligence Using Existing Entertainment Systems</title><author>Scholz, M. ; Flehmig, G. ; Schmidtke, H. R. ; Scholz, G. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1e89a30002e93c8c298265916d5022f16fd840b17e1fd329dc7ece94841668ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer architecture</topic><topic>Hardware</topic><topic>Microprocessors</topic><topic>Parallel processing</topic><topic>Random access memory</topic><topic>Smart homes</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Flehmig, G.</creatorcontrib><creatorcontrib>Schmidtke, H. R.</creatorcontrib><creatorcontrib>Scholz, G. H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scholz, M.</au><au>Flehmig, G.</au><au>Schmidtke, H. R.</au><au>Scholz, G. H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Powering Smart Home Intelligence Using Existing Entertainment Systems</atitle><btitle>2011 Seventh International Conference on Intelligent Environments</btitle><stitle>ie</stitle><date>2011-07</date><risdate>2011</risdate><spage>230</spage><epage>237</epage><pages>230-237</pages><isbn>1457708302</isbn><isbn>9781457708305</isbn><eisbn>0769544525</eisbn><eisbn>9780769544526</eisbn><abstract>Smart Homes and Smart Environments are classically centrally organized and utilize methods from machine learning and artificial intelligence. In recent years, continuous progress has been made and the technology has reached a level where the deployment becomes feasible on a larger scale and in everyday settings, raising the question where the central system should be deployed. In this paper, we propose the use of existing entertainment systems as the Smart Home controller. In a case study we examine the performance of the multi-core Cell processor of the Sony PlayStation 3 for training artificial feed forward neural networks using specifically adapted parallel training strategies. The evaluation of these strategies shows a gain in speed of up to 6.6 over a sequential implementation on a single processing element of the Cell. Based on these findings and related work we suggest that home entertainment systems should be considered as possible powerful, deployment platforms for future Smart Home systems.</abstract><pub>IEEE</pub><doi>10.1109/IE.2011.10</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457708302 |
ispartof | 2011 Seventh International Conference on Intelligent Environments, 2011, p.230-237 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6063390 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer architecture Hardware Microprocessors Parallel processing Random access memory Smart homes Training |
title | Powering Smart Home Intelligence Using Existing Entertainment Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Powering%20Smart%20Home%20Intelligence%20Using%20Existing%20Entertainment%20Systems&rft.btitle=2011%20Seventh%20International%20Conference%20on%20Intelligent%20Environments&rft.au=Scholz,%20M.&rft.date=2011-07&rft.spage=230&rft.epage=237&rft.pages=230-237&rft.isbn=1457708302&rft.isbn_list=9781457708305&rft_id=info:doi/10.1109/IE.2011.10&rft_dat=%3Cieee_6IE%3E6063390%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769544525&rft.eisbn_list=9780769544526&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6063390&rfr_iscdi=true |