Visual Vocabulary Processor Based on Binary Tree Architecture for Real-Time Object Recognition in Full-HD Resolution

Feature matching is an indispensable process for object recognition, which is an important issue for wearable devices with video analysis functionalities. To implement a low-power SoC for object recognition, the proposed visual vocabulary processor (VVP) is employed to accelerate the speed of featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2012-12, Vol.20 (12), p.2329-2332
Hauptverfasser: CHEN, Tse-Wei, SU, Yu-Chi, HUANG, Keng-Yen, TSAI, Yi-Min, CHIEN, Shao-Yi, CHEN, Liang-Gee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2332
container_issue 12
container_start_page 2329
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 20
creator CHEN, Tse-Wei
SU, Yu-Chi
HUANG, Keng-Yen
TSAI, Yi-Min
CHIEN, Shao-Yi
CHEN, Liang-Gee
description Feature matching is an indispensable process for object recognition, which is an important issue for wearable devices with video analysis functionalities. To implement a low-power SoC for object recognition, the proposed visual vocabulary processor (VVP) is employed to accelerate the speed of feature matching. The VVP can transform hundreds of 128-D SIFT vectors into a 64-D histogram for object matching by using the binary-tree-based architecture, and 16 calculators for the computations of the Euclidean distances are designed for each of the two processors in each level. A total of 126 visual words can be saved in the six-level hierarchical memory, which instantly offers the data required for the matching process, and more than 5 times of bandwidth can be saved compared with the non-binary-tree-based architecture. As a part of the recognition SoC, the VVP is implemented with the 65-nm CMOS technology, and the experimental results show that the gate count and the average power consumption are 280 K and 5.6 mW, respectively.
doi_str_mv 10.1109/TVLSI.2011.2170203
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6062665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6062665</ieee_id><sourcerecordid>26737098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-678119018d132f76bd3590162c59eefba45d6e5b7376a89d7feedbfca34b1dc83</originalsourceid><addsrcrecordid>eNo9UE1PwzAMrRBIjMEfgEsuHDvysSbNcQPGJk0agrJrlaYOZMraKWkP_HtSNs0X289-z_JLknuCJ4Rg-VRs15-rCcWETCgRmGJ2kYxIlolUxriMNeYszSnB18lNCDuMyXQq8Sjptjb0yqFtq1XVO-V_0btvNYTQejRXAWrUNmhum2FSeAA08_rHdqC73gMycesDlEsLuwe0qXYRj4Buvxvb2ci0DVr0zqXLlwiH1vUDeptcGeUC3J3yOPlavBbPy3S9eVs9z9applJ0KRc5IRKTvCaMGsGrmmWx5VRnEsBUaprVHLJKMMFVLmthAOrKaMWmFal1zsYJPepq34bgwZQHb_fxk5LgcvCt_PetHHwrT75F0uORdFBBK2e8arQNZybl8RyWg_jDcc8CwHnMMaecZ-wPAS54Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visual Vocabulary Processor Based on Binary Tree Architecture for Real-Time Object Recognition in Full-HD Resolution</title><source>IEEE Electronic Library (IEL)</source><creator>CHEN, Tse-Wei ; SU, Yu-Chi ; HUANG, Keng-Yen ; TSAI, Yi-Min ; CHIEN, Shao-Yi ; CHEN, Liang-Gee</creator><creatorcontrib>CHEN, Tse-Wei ; SU, Yu-Chi ; HUANG, Keng-Yen ; TSAI, Yi-Min ; CHIEN, Shao-Yi ; CHEN, Liang-Gee</creatorcontrib><description>Feature matching is an indispensable process for object recognition, which is an important issue for wearable devices with video analysis functionalities. To implement a low-power SoC for object recognition, the proposed visual vocabulary processor (VVP) is employed to accelerate the speed of feature matching. The VVP can transform hundreds of 128-D SIFT vectors into a 64-D histogram for object matching by using the binary-tree-based architecture, and 16 calculators for the computations of the Euclidean distances are designed for each of the two processors in each level. A total of 126 visual words can be saved in the six-level hierarchical memory, which instantly offers the data required for the matching process, and more than 5 times of bandwidth can be saved compared with the non-binary-tree-based architecture. As a part of the recognition SoC, the VVP is implemented with the 65-nm CMOS technology, and the experimental results show that the gate count and the average power consumption are 280 K and 5.6 mW, respectively.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2011.2170203</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Computer architecture ; Computer vision ; Design. Technologies. Operation analysis. Testing ; digital circuit ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; hardware architecture ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Object recognition ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; System-on-a-chip ; system-on-a-chip (SoC) ; Visualization</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2012-12, Vol.20 (12), p.2329-2332</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-678119018d132f76bd3590162c59eefba45d6e5b7376a89d7feedbfca34b1dc83</citedby><cites>FETCH-LOGICAL-c297t-678119018d132f76bd3590162c59eefba45d6e5b7376a89d7feedbfca34b1dc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6062665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6062665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26737098$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHEN, Tse-Wei</creatorcontrib><creatorcontrib>SU, Yu-Chi</creatorcontrib><creatorcontrib>HUANG, Keng-Yen</creatorcontrib><creatorcontrib>TSAI, Yi-Min</creatorcontrib><creatorcontrib>CHIEN, Shao-Yi</creatorcontrib><creatorcontrib>CHEN, Liang-Gee</creatorcontrib><title>Visual Vocabulary Processor Based on Binary Tree Architecture for Real-Time Object Recognition in Full-HD Resolution</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Feature matching is an indispensable process for object recognition, which is an important issue for wearable devices with video analysis functionalities. To implement a low-power SoC for object recognition, the proposed visual vocabulary processor (VVP) is employed to accelerate the speed of feature matching. The VVP can transform hundreds of 128-D SIFT vectors into a 64-D histogram for object matching by using the binary-tree-based architecture, and 16 calculators for the computations of the Euclidean distances are designed for each of the two processors in each level. A total of 126 visual words can be saved in the six-level hierarchical memory, which instantly offers the data required for the matching process, and more than 5 times of bandwidth can be saved compared with the non-binary-tree-based architecture. As a part of the recognition SoC, the VVP is implemented with the 65-nm CMOS technology, and the experimental results show that the gate count and the average power consumption are 280 K and 5.6 mW, respectively.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>digital circuit</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>hardware architecture</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Object recognition</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>System-on-a-chip</subject><subject>system-on-a-chip (SoC)</subject><subject>Visualization</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1PwzAMrRBIjMEfgEsuHDvysSbNcQPGJk0agrJrlaYOZMraKWkP_HtSNs0X289-z_JLknuCJ4Rg-VRs15-rCcWETCgRmGJ2kYxIlolUxriMNeYszSnB18lNCDuMyXQq8Sjptjb0yqFtq1XVO-V_0btvNYTQejRXAWrUNmhum2FSeAA08_rHdqC73gMycesDlEsLuwe0qXYRj4Buvxvb2ci0DVr0zqXLlwiH1vUDeptcGeUC3J3yOPlavBbPy3S9eVs9z9applJ0KRc5IRKTvCaMGsGrmmWx5VRnEsBUaprVHLJKMMFVLmthAOrKaMWmFal1zsYJPepq34bgwZQHb_fxk5LgcvCt_PetHHwrT75F0uORdFBBK2e8arQNZybl8RyWg_jDcc8CwHnMMaecZ-wPAS54Ng</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>CHEN, Tse-Wei</creator><creator>SU, Yu-Chi</creator><creator>HUANG, Keng-Yen</creator><creator>TSAI, Yi-Min</creator><creator>CHIEN, Shao-Yi</creator><creator>CHEN, Liang-Gee</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121201</creationdate><title>Visual Vocabulary Processor Based on Binary Tree Architecture for Real-Time Object Recognition in Full-HD Resolution</title><author>CHEN, Tse-Wei ; SU, Yu-Chi ; HUANG, Keng-Yen ; TSAI, Yi-Min ; CHIEN, Shao-Yi ; CHEN, Liang-Gee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-678119018d132f76bd3590162c59eefba45d6e5b7376a89d7feedbfca34b1dc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>digital circuit</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>hardware architecture</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Object recognition</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>System-on-a-chip</topic><topic>system-on-a-chip (SoC)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHEN, Tse-Wei</creatorcontrib><creatorcontrib>SU, Yu-Chi</creatorcontrib><creatorcontrib>HUANG, Keng-Yen</creatorcontrib><creatorcontrib>TSAI, Yi-Min</creatorcontrib><creatorcontrib>CHIEN, Shao-Yi</creatorcontrib><creatorcontrib>CHEN, Liang-Gee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN, Tse-Wei</au><au>SU, Yu-Chi</au><au>HUANG, Keng-Yen</au><au>TSAI, Yi-Min</au><au>CHIEN, Shao-Yi</au><au>CHEN, Liang-Gee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Vocabulary Processor Based on Binary Tree Architecture for Real-Time Object Recognition in Full-HD Resolution</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>20</volume><issue>12</issue><spage>2329</spage><epage>2332</epage><pages>2329-2332</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Feature matching is an indispensable process for object recognition, which is an important issue for wearable devices with video analysis functionalities. To implement a low-power SoC for object recognition, the proposed visual vocabulary processor (VVP) is employed to accelerate the speed of feature matching. The VVP can transform hundreds of 128-D SIFT vectors into a 64-D histogram for object matching by using the binary-tree-based architecture, and 16 calculators for the computations of the Euclidean distances are designed for each of the two processors in each level. A total of 126 visual words can be saved in the six-level hierarchical memory, which instantly offers the data required for the matching process, and more than 5 times of bandwidth can be saved compared with the non-binary-tree-based architecture. As a part of the recognition SoC, the VVP is implemented with the 65-nm CMOS technology, and the experimental results show that the gate count and the average power consumption are 280 K and 5.6 mW, respectively.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2011.2170203</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2012-12, Vol.20 (12), p.2329-2332
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_6062665
source IEEE Electronic Library (IEL)
subjects Applied sciences
Circuit properties
Computer architecture
Computer vision
Design. Technologies. Operation analysis. Testing
digital circuit
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
hardware architecture
Integrated circuits
Integrated circuits by function (including memories and processors)
Object recognition
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
System-on-a-chip
system-on-a-chip (SoC)
Visualization
title Visual Vocabulary Processor Based on Binary Tree Architecture for Real-Time Object Recognition in Full-HD Resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Vocabulary%20Processor%20Based%20on%20Binary%20Tree%20Architecture%20for%20Real-Time%20Object%20Recognition%20in%20Full-HD%20Resolution&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=CHEN,%20Tse-Wei&rft.date=2012-12-01&rft.volume=20&rft.issue=12&rft.spage=2329&rft.epage=2332&rft.pages=2329-2332&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2011.2170203&rft_dat=%3Cpascalfrancis_RIE%3E26737098%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6062665&rfr_iscdi=true