Optimal number of neurons for a two layer neural network model of a process

Neural networks are known as powerful tools to represent the essential properties of nonlinear processes because of their global approximation property. However, a key problem in modeling nonlinear processes by neural networks is the determination of neuron numbers. In this paper, a data based strat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Asadi, M. S., Fatehi, A., Hosseini, M., Sedigh, A. K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2221
container_issue
container_start_page 2216
container_title
container_volume
creator Asadi, M. S.
Fatehi, A.
Hosseini, M.
Sedigh, A. K.
description Neural networks are known as powerful tools to represent the essential properties of nonlinear processes because of their global approximation property. However, a key problem in modeling nonlinear processes by neural networks is the determination of neuron numbers. In this paper, a data based strategy for determining number of hidden layer neurons based on the Barrons work, describing function analysis and bicoherence nonlinearity measure is proposed. The proposed algorithm is evaluated for a pH neutralization process. It is shown that this algorithm has acceptable results.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6060341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6060341</ieee_id><sourcerecordid>6060341</sourcerecordid><originalsourceid>FETCH-ieee_primary_60603413</originalsourceid><addsrcrecordid>eNp9jUEKwjAURCMiKNoTuPkXEFKaJs1aFMGFG_cl6i9U0yT8tEhvbyqunc0w8wZmxjKtKqG5UlIUupx_cy5KpbjKRbVkWYxPniRlAnrFzpfQt52x4IbuhgS-AYcDeReh8QQG-rcHa8aEpn4aYqroBZ1_oJ32BgL5O8a4YYvG2IjZz9dsezxc96ddi4h1oPRDYy255IXIi__0A_PKOsA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal number of neurons for a two layer neural network model of a process</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Asadi, M. S. ; Fatehi, A. ; Hosseini, M. ; Sedigh, A. K.</creator><creatorcontrib>Asadi, M. S. ; Fatehi, A. ; Hosseini, M. ; Sedigh, A. K.</creatorcontrib><description>Neural networks are known as powerful tools to represent the essential properties of nonlinear processes because of their global approximation property. However, a key problem in modeling nonlinear processes by neural networks is the determination of neuron numbers. In this paper, a data based strategy for determining number of hidden layer neurons based on the Barrons work, describing function analysis and bicoherence nonlinearity measure is proposed. The proposed algorithm is evaluated for a pH neutralization process. It is shown that this algorithm has acceptable results.</description><identifier>ISBN: 9781457707148</identifier><identifier>ISBN: 1457707144</identifier><identifier>EISBN: 9784907764395</identifier><identifier>EISBN: 4907764391</identifier><identifier>EISBN: 9781907764388</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; bicoherence test ; Biological neural networks ; Complexity theory ; Feedforward neural networks ; Frequency domain analysis ; Inphase-quadrature demodulation ; neural network ; Neurons ; Nonlinearity measure ; Training</subject><ispartof>SICE Annual Conference 2011, 2011, p.2216-2221</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6060341$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6060341$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Asadi, M. S.</creatorcontrib><creatorcontrib>Fatehi, A.</creatorcontrib><creatorcontrib>Hosseini, M.</creatorcontrib><creatorcontrib>Sedigh, A. K.</creatorcontrib><title>Optimal number of neurons for a two layer neural network model of a process</title><title>SICE Annual Conference 2011</title><addtitle>SICE</addtitle><description>Neural networks are known as powerful tools to represent the essential properties of nonlinear processes because of their global approximation property. However, a key problem in modeling nonlinear processes by neural networks is the determination of neuron numbers. In this paper, a data based strategy for determining number of hidden layer neurons based on the Barrons work, describing function analysis and bicoherence nonlinearity measure is proposed. The proposed algorithm is evaluated for a pH neutralization process. It is shown that this algorithm has acceptable results.</description><subject>Approximation methods</subject><subject>bicoherence test</subject><subject>Biological neural networks</subject><subject>Complexity theory</subject><subject>Feedforward neural networks</subject><subject>Frequency domain analysis</subject><subject>Inphase-quadrature demodulation</subject><subject>neural network</subject><subject>Neurons</subject><subject>Nonlinearity measure</subject><subject>Training</subject><isbn>9781457707148</isbn><isbn>1457707144</isbn><isbn>9784907764395</isbn><isbn>4907764391</isbn><isbn>9781907764388</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jUEKwjAURCMiKNoTuPkXEFKaJs1aFMGFG_cl6i9U0yT8tEhvbyqunc0w8wZmxjKtKqG5UlIUupx_cy5KpbjKRbVkWYxPniRlAnrFzpfQt52x4IbuhgS-AYcDeReh8QQG-rcHa8aEpn4aYqroBZ1_oJ32BgL5O8a4YYvG2IjZz9dsezxc96ddi4h1oPRDYy255IXIi__0A_PKOsA</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Asadi, M. S.</creator><creator>Fatehi, A.</creator><creator>Hosseini, M.</creator><creator>Sedigh, A. K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Optimal number of neurons for a two layer neural network model of a process</title><author>Asadi, M. S. ; Fatehi, A. ; Hosseini, M. ; Sedigh, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_60603413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation methods</topic><topic>bicoherence test</topic><topic>Biological neural networks</topic><topic>Complexity theory</topic><topic>Feedforward neural networks</topic><topic>Frequency domain analysis</topic><topic>Inphase-quadrature demodulation</topic><topic>neural network</topic><topic>Neurons</topic><topic>Nonlinearity measure</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Asadi, M. S.</creatorcontrib><creatorcontrib>Fatehi, A.</creatorcontrib><creatorcontrib>Hosseini, M.</creatorcontrib><creatorcontrib>Sedigh, A. K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asadi, M. S.</au><au>Fatehi, A.</au><au>Hosseini, M.</au><au>Sedigh, A. K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal number of neurons for a two layer neural network model of a process</atitle><btitle>SICE Annual Conference 2011</btitle><stitle>SICE</stitle><date>2011-09</date><risdate>2011</risdate><spage>2216</spage><epage>2221</epage><pages>2216-2221</pages><isbn>9781457707148</isbn><isbn>1457707144</isbn><eisbn>9784907764395</eisbn><eisbn>4907764391</eisbn><eisbn>9781907764388</eisbn><abstract>Neural networks are known as powerful tools to represent the essential properties of nonlinear processes because of their global approximation property. However, a key problem in modeling nonlinear processes by neural networks is the determination of neuron numbers. In this paper, a data based strategy for determining number of hidden layer neurons based on the Barrons work, describing function analysis and bicoherence nonlinearity measure is proposed. The proposed algorithm is evaluated for a pH neutralization process. It is shown that this algorithm has acceptable results.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457707148
ispartof SICE Annual Conference 2011, 2011, p.2216-2221
issn
language eng
recordid cdi_ieee_primary_6060341
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
bicoherence test
Biological neural networks
Complexity theory
Feedforward neural networks
Frequency domain analysis
Inphase-quadrature demodulation
neural network
Neurons
Nonlinearity measure
Training
title Optimal number of neurons for a two layer neural network model of a process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20number%20of%20neurons%20for%20a%20two%20layer%20neural%20network%20model%20of%20a%20process&rft.btitle=SICE%20Annual%20Conference%202011&rft.au=Asadi,%20M.%20S.&rft.date=2011-09&rft.spage=2216&rft.epage=2221&rft.pages=2216-2221&rft.isbn=9781457707148&rft.isbn_list=1457707144&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6060341%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9784907764395&rft.eisbn_list=4907764391&rft.eisbn_list=9781907764388&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6060341&rfr_iscdi=true