Study on a new method to identify inrush current of transformer based on wavelet neural network

Focusing on the key problem of transformer protection malfunction caused by the inrush current, this paper analyses the transient mechanism, establishes mathematical model, studies inrush current quantitatively by derivation of equation firstly. On this basis, the simulation models of inrush current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maofa Gong, Xiaoming Zhang, Zheng Gong, Wenhua Xia, Jiangbo Wu, Chen Lv
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 852
container_issue
container_start_page 848
container_title
container_volume
creator Maofa Gong
Xiaoming Zhang
Zheng Gong
Wenhua Xia
Jiangbo Wu
Chen Lv
description Focusing on the key problem of transformer protection malfunction caused by the inrush current, this paper analyses the transient mechanism, establishes mathematical model, studies inrush current quantitatively by derivation of equation firstly. On this basis, the simulation models of inrush current and short circuit current are established on the simulation platform PSCAD/EMTDC, the wavelet multiresolution analysis of the two currents is adopted by using the wavelet toolbox of matlab in this paper. According to the 'higher energy' characteristic of the inrush current's waveform after wavelet transform, this paper uses db5 wavelet to extract wavelet transform energy characteristic values of inrush current and short circuit current, takes these as feature spaces of improved BP neural network pattern recognition, uses the classificatory function of neural network to distinguish inrush current and short circuit current. At last, a new reliability criterion which is simple and more easily digital applied is proposed. A lot of simulations verify that the new method proposed in this paper has the advantages of high dependability, good sensitivity and quick acting speed. The action time of protection is generally around 14ms.
doi_str_mv 10.1109/ICECENG.2011.6057753
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6057753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6057753</ieee_id><sourcerecordid>6057753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c141t-4ca7ec4cc0087385ceb202de706632b7f78fc5689298d18ea5fbfc118fe62df33</originalsourceid><addsrcrecordid>eNo1UFFLwzAYjIigzv4Cfcgf2MyXpE36KGXOwdAH9bmkyRdW3VpJUkv_vRXnvRx3cMdxhNwBWwGw8n5brav182bFGcCqYLlSuTgj1yC5lBoKKc5JVir9rzm7JFmMH2xGUZSgxRWpX9PgJtp31NAOR3rEtO8dTT1tHXap9RNtuzDEPbVDCLNDe09TMF30fThioI2J6H7zo_nGA6a5ZQjmMFMa-_B5Qy68OUTMTrwg74_rt-ppuXvZbKuH3dKChLSU1ii00lrGtBI6t9hwxh2qeajgjfJKe5sXuuSldqDR5L7xFkB7LLjzQizI7V9vi4j1V2iPJkz16RPxAzQCV10</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Study on a new method to identify inrush current of transformer based on wavelet neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Maofa Gong ; Xiaoming Zhang ; Zheng Gong ; Wenhua Xia ; Jiangbo Wu ; Chen Lv</creator><creatorcontrib>Maofa Gong ; Xiaoming Zhang ; Zheng Gong ; Wenhua Xia ; Jiangbo Wu ; Chen Lv</creatorcontrib><description>Focusing on the key problem of transformer protection malfunction caused by the inrush current, this paper analyses the transient mechanism, establishes mathematical model, studies inrush current quantitatively by derivation of equation firstly. On this basis, the simulation models of inrush current and short circuit current are established on the simulation platform PSCAD/EMTDC, the wavelet multiresolution analysis of the two currents is adopted by using the wavelet toolbox of matlab in this paper. According to the 'higher energy' characteristic of the inrush current's waveform after wavelet transform, this paper uses db5 wavelet to extract wavelet transform energy characteristic values of inrush current and short circuit current, takes these as feature spaces of improved BP neural network pattern recognition, uses the classificatory function of neural network to distinguish inrush current and short circuit current. At last, a new reliability criterion which is simple and more easily digital applied is proposed. A lot of simulations verify that the new method proposed in this paper has the advantages of high dependability, good sensitivity and quick acting speed. The action time of protection is generally around 14ms.</description><identifier>ISBN: 9781424481620</identifier><identifier>ISBN: 1424481627</identifier><identifier>EISBN: 1424481643</identifier><identifier>EISBN: 9781424481644</identifier><identifier>EISBN: 1424481651</identifier><identifier>EISBN: 9781424481651</identifier><identifier>DOI: 10.1109/ICECENG.2011.6057753</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit faults ; differential protection ; inrush current ; neural network ; Power transformers ; PSCAD/EMTDC ; Surge protection ; Surges ; Training ; Transformer ; wavelet analysis ; Wavelet transforms</subject><ispartof>2011 International Conference on Electrical and Control Engineering, 2011, p.848-852</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c141t-4ca7ec4cc0087385ceb202de706632b7f78fc5689298d18ea5fbfc118fe62df33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6057753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6057753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maofa Gong</creatorcontrib><creatorcontrib>Xiaoming Zhang</creatorcontrib><creatorcontrib>Zheng Gong</creatorcontrib><creatorcontrib>Wenhua Xia</creatorcontrib><creatorcontrib>Jiangbo Wu</creatorcontrib><creatorcontrib>Chen Lv</creatorcontrib><title>Study on a new method to identify inrush current of transformer based on wavelet neural network</title><title>2011 International Conference on Electrical and Control Engineering</title><addtitle>ICECENG</addtitle><description>Focusing on the key problem of transformer protection malfunction caused by the inrush current, this paper analyses the transient mechanism, establishes mathematical model, studies inrush current quantitatively by derivation of equation firstly. On this basis, the simulation models of inrush current and short circuit current are established on the simulation platform PSCAD/EMTDC, the wavelet multiresolution analysis of the two currents is adopted by using the wavelet toolbox of matlab in this paper. According to the 'higher energy' characteristic of the inrush current's waveform after wavelet transform, this paper uses db5 wavelet to extract wavelet transform energy characteristic values of inrush current and short circuit current, takes these as feature spaces of improved BP neural network pattern recognition, uses the classificatory function of neural network to distinguish inrush current and short circuit current. At last, a new reliability criterion which is simple and more easily digital applied is proposed. A lot of simulations verify that the new method proposed in this paper has the advantages of high dependability, good sensitivity and quick acting speed. The action time of protection is generally around 14ms.</description><subject>Circuit faults</subject><subject>differential protection</subject><subject>inrush current</subject><subject>neural network</subject><subject>Power transformers</subject><subject>PSCAD/EMTDC</subject><subject>Surge protection</subject><subject>Surges</subject><subject>Training</subject><subject>Transformer</subject><subject>wavelet analysis</subject><subject>Wavelet transforms</subject><isbn>9781424481620</isbn><isbn>1424481627</isbn><isbn>1424481643</isbn><isbn>9781424481644</isbn><isbn>1424481651</isbn><isbn>9781424481651</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UFFLwzAYjIigzv4Cfcgf2MyXpE36KGXOwdAH9bmkyRdW3VpJUkv_vRXnvRx3cMdxhNwBWwGw8n5brav182bFGcCqYLlSuTgj1yC5lBoKKc5JVir9rzm7JFmMH2xGUZSgxRWpX9PgJtp31NAOR3rEtO8dTT1tHXap9RNtuzDEPbVDCLNDe09TMF30fThioI2J6H7zo_nGA6a5ZQjmMFMa-_B5Qy68OUTMTrwg74_rt-ppuXvZbKuH3dKChLSU1ii00lrGtBI6t9hwxh2qeajgjfJKe5sXuuSldqDR5L7xFkB7LLjzQizI7V9vi4j1V2iPJkz16RPxAzQCV10</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Maofa Gong</creator><creator>Xiaoming Zhang</creator><creator>Zheng Gong</creator><creator>Wenhua Xia</creator><creator>Jiangbo Wu</creator><creator>Chen Lv</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Study on a new method to identify inrush current of transformer based on wavelet neural network</title><author>Maofa Gong ; Xiaoming Zhang ; Zheng Gong ; Wenhua Xia ; Jiangbo Wu ; Chen Lv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c141t-4ca7ec4cc0087385ceb202de706632b7f78fc5689298d18ea5fbfc118fe62df33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Circuit faults</topic><topic>differential protection</topic><topic>inrush current</topic><topic>neural network</topic><topic>Power transformers</topic><topic>PSCAD/EMTDC</topic><topic>Surge protection</topic><topic>Surges</topic><topic>Training</topic><topic>Transformer</topic><topic>wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Maofa Gong</creatorcontrib><creatorcontrib>Xiaoming Zhang</creatorcontrib><creatorcontrib>Zheng Gong</creatorcontrib><creatorcontrib>Wenhua Xia</creatorcontrib><creatorcontrib>Jiangbo Wu</creatorcontrib><creatorcontrib>Chen Lv</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maofa Gong</au><au>Xiaoming Zhang</au><au>Zheng Gong</au><au>Wenhua Xia</au><au>Jiangbo Wu</au><au>Chen Lv</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study on a new method to identify inrush current of transformer based on wavelet neural network</atitle><btitle>2011 International Conference on Electrical and Control Engineering</btitle><stitle>ICECENG</stitle><date>2011-09</date><risdate>2011</risdate><spage>848</spage><epage>852</epage><pages>848-852</pages><isbn>9781424481620</isbn><isbn>1424481627</isbn><eisbn>1424481643</eisbn><eisbn>9781424481644</eisbn><eisbn>1424481651</eisbn><eisbn>9781424481651</eisbn><abstract>Focusing on the key problem of transformer protection malfunction caused by the inrush current, this paper analyses the transient mechanism, establishes mathematical model, studies inrush current quantitatively by derivation of equation firstly. On this basis, the simulation models of inrush current and short circuit current are established on the simulation platform PSCAD/EMTDC, the wavelet multiresolution analysis of the two currents is adopted by using the wavelet toolbox of matlab in this paper. According to the 'higher energy' characteristic of the inrush current's waveform after wavelet transform, this paper uses db5 wavelet to extract wavelet transform energy characteristic values of inrush current and short circuit current, takes these as feature spaces of improved BP neural network pattern recognition, uses the classificatory function of neural network to distinguish inrush current and short circuit current. At last, a new reliability criterion which is simple and more easily digital applied is proposed. A lot of simulations verify that the new method proposed in this paper has the advantages of high dependability, good sensitivity and quick acting speed. The action time of protection is generally around 14ms.</abstract><pub>IEEE</pub><doi>10.1109/ICECENG.2011.6057753</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424481620
ispartof 2011 International Conference on Electrical and Control Engineering, 2011, p.848-852
issn
language eng
recordid cdi_ieee_primary_6057753
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Circuit faults
differential protection
inrush current
neural network
Power transformers
PSCAD/EMTDC
Surge protection
Surges
Training
Transformer
wavelet analysis
Wavelet transforms
title Study on a new method to identify inrush current of transformer based on wavelet neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20on%20a%20new%20method%20to%20identify%20inrush%20current%20of%20transformer%20based%20on%20wavelet%20neural%20network&rft.btitle=2011%20International%20Conference%20on%20Electrical%20and%20Control%20Engineering&rft.au=Maofa%20Gong&rft.date=2011-09&rft.spage=848&rft.epage=852&rft.pages=848-852&rft.isbn=9781424481620&rft.isbn_list=1424481627&rft_id=info:doi/10.1109/ICECENG.2011.6057753&rft_dat=%3Cieee_6IE%3E6057753%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481643&rft.eisbn_list=9781424481644&rft.eisbn_list=1424481651&rft.eisbn_list=9781424481651&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6057753&rfr_iscdi=true