Daily solar radiation prediction based on Genetic Algorithm Optimization of wavelet neural network

Daily solar radiation prediction is a nonlinear and non-stationary process. It's hard to model with a single method. A Genetic Algorithm Optimization of Wavelet Neural Network (GAO-WNN) model was set in this paper. The nonlinear process of daily solar radiation was forecasted by neural network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jianping Wang, Yunlin Xie, Chenghui Zhu, Xiaobing Xu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 605
container_issue
container_start_page 602
container_title
container_volume
creator Jianping Wang
Yunlin Xie
Chenghui Zhu
Xiaobing Xu
description Daily solar radiation prediction is a nonlinear and non-stationary process. It's hard to model with a single method. A Genetic Algorithm Optimization of Wavelet Neural Network (GAO-WNN) model was set in this paper. The nonlinear process of daily solar radiation was forecasted by neural network and the non-stationary process of daily solar radiation was decomposed into quasi-stationary at different frequency scales by multi-scale characteristics of wavelet transform. Input weights, output weights, scale factors and translation factors were optimized by genetic algorithm. Gradient descent method was used to make further training of the model with temperature, clearness index, and daily radiation data. Simulation results indicate that the method is satisfactory to the prediction of daily solar radiation.
doi_str_mv 10.1109/ICECENG.2011.6057583
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6057583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6057583</ieee_id><sourcerecordid>6057583</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2b8adb444badcede38e3a8a560daf4910770a522b8866fb1a395ed5161586dd03</originalsourceid><addsrcrecordid>eNo1UM1OwzAYC0JIwOgTwCEv0JI0P02PUylj0sQuu09fm68Q6J_SwDSenooNX2xLtg8m5IGzhHOWP66LsihfV0nKOE80U5ky4oLccplKabiW4pJEeWb-fcquSTRNH2yG1jk34oZUT-DaI52GFjz1YB0EN_R09Ghd_ScrmNDSWaywx-BqumzfBu_Ce0e3Y3Cd-zlVhoYe4BtbDLTHLw_tTOEw-M87ctVAO2F05gXZPZe74iXebFfrYrmJXc5CnFYGbCWlrMDWaFEYFGBAaWahkTlnWcZApXPMaN1UHESu0CquuTLaWiYW5P406xBxP3rXgT_uz6-IX2cZWHk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Daily solar radiation prediction based on Genetic Algorithm Optimization of wavelet neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jianping Wang ; Yunlin Xie ; Chenghui Zhu ; Xiaobing Xu</creator><creatorcontrib>Jianping Wang ; Yunlin Xie ; Chenghui Zhu ; Xiaobing Xu</creatorcontrib><description>Daily solar radiation prediction is a nonlinear and non-stationary process. It's hard to model with a single method. A Genetic Algorithm Optimization of Wavelet Neural Network (GAO-WNN) model was set in this paper. The nonlinear process of daily solar radiation was forecasted by neural network and the non-stationary process of daily solar radiation was decomposed into quasi-stationary at different frequency scales by multi-scale characteristics of wavelet transform. Input weights, output weights, scale factors and translation factors were optimized by genetic algorithm. Gradient descent method was used to make further training of the model with temperature, clearness index, and daily radiation data. Simulation results indicate that the method is satisfactory to the prediction of daily solar radiation.</description><identifier>ISBN: 9781424481620</identifier><identifier>ISBN: 1424481627</identifier><identifier>EISBN: 1424481643</identifier><identifier>EISBN: 9781424481644</identifier><identifier>EISBN: 1424481651</identifier><identifier>EISBN: 9781424481651</identifier><identifier>DOI: 10.1109/ICECENG.2011.6057583</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological neural networks ; daily solar radiation prediction ; Data models ; genetic algorithm optimization ; Genetic algorithms ; Neurons ; Optimization ; Predictive models ; Solar radiation ; wavelet neural network</subject><ispartof>2011 International Conference on Electrical and Control Engineering, 2011, p.602-605</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6057583$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6057583$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jianping Wang</creatorcontrib><creatorcontrib>Yunlin Xie</creatorcontrib><creatorcontrib>Chenghui Zhu</creatorcontrib><creatorcontrib>Xiaobing Xu</creatorcontrib><title>Daily solar radiation prediction based on Genetic Algorithm Optimization of wavelet neural network</title><title>2011 International Conference on Electrical and Control Engineering</title><addtitle>ICECENG</addtitle><description>Daily solar radiation prediction is a nonlinear and non-stationary process. It's hard to model with a single method. A Genetic Algorithm Optimization of Wavelet Neural Network (GAO-WNN) model was set in this paper. The nonlinear process of daily solar radiation was forecasted by neural network and the non-stationary process of daily solar radiation was decomposed into quasi-stationary at different frequency scales by multi-scale characteristics of wavelet transform. Input weights, output weights, scale factors and translation factors were optimized by genetic algorithm. Gradient descent method was used to make further training of the model with temperature, clearness index, and daily radiation data. Simulation results indicate that the method is satisfactory to the prediction of daily solar radiation.</description><subject>Biological neural networks</subject><subject>daily solar radiation prediction</subject><subject>Data models</subject><subject>genetic algorithm optimization</subject><subject>Genetic algorithms</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Solar radiation</subject><subject>wavelet neural network</subject><isbn>9781424481620</isbn><isbn>1424481627</isbn><isbn>1424481643</isbn><isbn>9781424481644</isbn><isbn>1424481651</isbn><isbn>9781424481651</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1OwzAYC0JIwOgTwCEv0JI0P02PUylj0sQuu09fm68Q6J_SwDSenooNX2xLtg8m5IGzhHOWP66LsihfV0nKOE80U5ky4oLccplKabiW4pJEeWb-fcquSTRNH2yG1jk34oZUT-DaI52GFjz1YB0EN_R09Ghd_ScrmNDSWaywx-BqumzfBu_Ce0e3Y3Cd-zlVhoYe4BtbDLTHLw_tTOEw-M87ctVAO2F05gXZPZe74iXebFfrYrmJXc5CnFYGbCWlrMDWaFEYFGBAaWahkTlnWcZApXPMaN1UHESu0CquuTLaWiYW5P406xBxP3rXgT_uz6-IX2cZWHk</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Jianping Wang</creator><creator>Yunlin Xie</creator><creator>Chenghui Zhu</creator><creator>Xiaobing Xu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Daily solar radiation prediction based on Genetic Algorithm Optimization of wavelet neural network</title><author>Jianping Wang ; Yunlin Xie ; Chenghui Zhu ; Xiaobing Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2b8adb444badcede38e3a8a560daf4910770a522b8866fb1a395ed5161586dd03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological neural networks</topic><topic>daily solar radiation prediction</topic><topic>Data models</topic><topic>genetic algorithm optimization</topic><topic>Genetic algorithms</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Solar radiation</topic><topic>wavelet neural network</topic><toplevel>online_resources</toplevel><creatorcontrib>Jianping Wang</creatorcontrib><creatorcontrib>Yunlin Xie</creatorcontrib><creatorcontrib>Chenghui Zhu</creatorcontrib><creatorcontrib>Xiaobing Xu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianping Wang</au><au>Yunlin Xie</au><au>Chenghui Zhu</au><au>Xiaobing Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Daily solar radiation prediction based on Genetic Algorithm Optimization of wavelet neural network</atitle><btitle>2011 International Conference on Electrical and Control Engineering</btitle><stitle>ICECENG</stitle><date>2011-09</date><risdate>2011</risdate><spage>602</spage><epage>605</epage><pages>602-605</pages><isbn>9781424481620</isbn><isbn>1424481627</isbn><eisbn>1424481643</eisbn><eisbn>9781424481644</eisbn><eisbn>1424481651</eisbn><eisbn>9781424481651</eisbn><abstract>Daily solar radiation prediction is a nonlinear and non-stationary process. It's hard to model with a single method. A Genetic Algorithm Optimization of Wavelet Neural Network (GAO-WNN) model was set in this paper. The nonlinear process of daily solar radiation was forecasted by neural network and the non-stationary process of daily solar radiation was decomposed into quasi-stationary at different frequency scales by multi-scale characteristics of wavelet transform. Input weights, output weights, scale factors and translation factors were optimized by genetic algorithm. Gradient descent method was used to make further training of the model with temperature, clearness index, and daily radiation data. Simulation results indicate that the method is satisfactory to the prediction of daily solar radiation.</abstract><pub>IEEE</pub><doi>10.1109/ICECENG.2011.6057583</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424481620
ispartof 2011 International Conference on Electrical and Control Engineering, 2011, p.602-605
issn
language eng
recordid cdi_ieee_primary_6057583
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological neural networks
daily solar radiation prediction
Data models
genetic algorithm optimization
Genetic algorithms
Neurons
Optimization
Predictive models
Solar radiation
wavelet neural network
title Daily solar radiation prediction based on Genetic Algorithm Optimization of wavelet neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Daily%20solar%20radiation%20prediction%20based%20on%20Genetic%20Algorithm%20Optimization%20of%20wavelet%20neural%20network&rft.btitle=2011%20International%20Conference%20on%20Electrical%20and%20Control%20Engineering&rft.au=Jianping%20Wang&rft.date=2011-09&rft.spage=602&rft.epage=605&rft.pages=602-605&rft.isbn=9781424481620&rft.isbn_list=1424481627&rft_id=info:doi/10.1109/ICECENG.2011.6057583&rft_dat=%3Cieee_6IE%3E6057583%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481643&rft.eisbn_list=9781424481644&rft.eisbn_list=1424481651&rft.eisbn_list=9781424481651&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6057583&rfr_iscdi=true