Hydrogen heating in the discharge chamber of powerful electric discharge launcher
Summary form only given, as follows. Results of the discharge chamber of an electric discharge launcher testing, aiming at a heat transfer study is presented. Test conditions are: initial H/sub 2/ pressure-5-40 MPa, discharge chamber volume-1400 cm/sup 3/, current /spl les/1.5 MA, energy stored-1.3...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 318 |
container_title | |
container_volume | |
creator | Rutberg, Ph.G. Bogomaz, A.A. Budin, A.V. Kolikov, V.A. Kuprin, A.G. |
description | Summary form only given, as follows. Results of the discharge chamber of an electric discharge launcher testing, aiming at a heat transfer study is presented. Test conditions are: initial H/sub 2/ pressure-5-40 MPa, discharge chamber volume-1400 cm/sup 3/, current /spl les/1.5 MA, energy stored-1.3 MJ, circuit own frequency-1 kHz. To simulate gas heating in the EDL discharge chamber and to use high speed camera, a diagnostic discharge chamber was made. Based on the arc dynamics study in the diagnostic discharge chamber, temperature and conductivity estimations of the arc channel were carried out for the EDL chamber. Measured pressure 200 MPa and conductivity 230 (/spl Omega//spl times/cm)/sup -1/ correspond to temperatures of (3.3-3.5)/spl times/10/sup 4/ K and of (2.3-2.4)/spl times/10/sup 4/ K for the arcs, burning respectively in copper vapor and in H/sub 2/. Real temperature seems to lie between these two values. Since the pressure equilibrium in the volume was reached, acoustic oscillations may be used to evaluate gas temperature. Moving arcs cause shock waves registered by pressure transducers, placed along discharge length, and by high speed camera. Arc-to-gas energy transfer efficiency rises along with initial H/sub 2/ pressure increase and reaches 90% for 40 MPa. Both shock wave propagation and arc radiation absorption contribute to this rise. |
doi_str_mv | 10.1109/PLASMA.1997.605165 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_605165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>605165</ieee_id><sourcerecordid>605165</sourcerecordid><originalsourceid>FETCH-ieee_primary_6051653</originalsourceid><addsrcrecordid>eNp9jr0OgjAURm_8ScSfF3DqC4C3FCgdjdE4aKLRnVS8QA2CKRjj22uig5NnOcP5hg9gytHjHNVst5kftnOPKyW9CEMehR1w_FBGrvQx7sIQZYxCKIVxDxyUAl3lB8EAJk1zwTdByIWvHNivn2db51SxgnRrqpyZirUFsbNp0kLbnNhb1xNZVmfsVj_IZveSUUlpa036Myv1vUoLsmPoZ7psaPL1CKar5XGxdg0RJTdrrto-k89p8Te-AIHmQxM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hydrogen heating in the discharge chamber of powerful electric discharge launcher</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rutberg, Ph.G. ; Bogomaz, A.A. ; Budin, A.V. ; Kolikov, V.A. ; Kuprin, A.G.</creator><creatorcontrib>Rutberg, Ph.G. ; Bogomaz, A.A. ; Budin, A.V. ; Kolikov, V.A. ; Kuprin, A.G.</creatorcontrib><description>Summary form only given, as follows. Results of the discharge chamber of an electric discharge launcher testing, aiming at a heat transfer study is presented. Test conditions are: initial H/sub 2/ pressure-5-40 MPa, discharge chamber volume-1400 cm/sup 3/, current /spl les/1.5 MA, energy stored-1.3 MJ, circuit own frequency-1 kHz. To simulate gas heating in the EDL discharge chamber and to use high speed camera, a diagnostic discharge chamber was made. Based on the arc dynamics study in the diagnostic discharge chamber, temperature and conductivity estimations of the arc channel were carried out for the EDL chamber. Measured pressure 200 MPa and conductivity 230 (/spl Omega//spl times/cm)/sup -1/ correspond to temperatures of (3.3-3.5)/spl times/10/sup 4/ K and of (2.3-2.4)/spl times/10/sup 4/ K for the arcs, burning respectively in copper vapor and in H/sub 2/. Real temperature seems to lie between these two values. Since the pressure equilibrium in the volume was reached, acoustic oscillations may be used to evaluate gas temperature. Moving arcs cause shock waves registered by pressure transducers, placed along discharge length, and by high speed camera. Arc-to-gas energy transfer efficiency rises along with initial H/sub 2/ pressure increase and reaches 90% for 40 MPa. Both shock wave propagation and arc radiation absorption contribute to this rise.</description><identifier>ISSN: 0730-9244</identifier><identifier>ISBN: 0780339908</identifier><identifier>ISBN: 9780780339903</identifier><identifier>EISSN: 2576-7208</identifier><identifier>DOI: 10.1109/PLASMA.1997.605165</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Circuit simulation ; Circuit testing ; Conductivity ; Frequency ; Heat transfer ; Hydrogen ; Resistance heating ; Shock waves ; Temperature</subject><ispartof>IEEE Conference Record - Abstracts. 1997 IEEE International Conference on Plasma Science, 1997, p.318</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/605165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/605165$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rutberg, Ph.G.</creatorcontrib><creatorcontrib>Bogomaz, A.A.</creatorcontrib><creatorcontrib>Budin, A.V.</creatorcontrib><creatorcontrib>Kolikov, V.A.</creatorcontrib><creatorcontrib>Kuprin, A.G.</creatorcontrib><title>Hydrogen heating in the discharge chamber of powerful electric discharge launcher</title><title>IEEE Conference Record - Abstracts. 1997 IEEE International Conference on Plasma Science</title><addtitle>PLASMA</addtitle><description>Summary form only given, as follows. Results of the discharge chamber of an electric discharge launcher testing, aiming at a heat transfer study is presented. Test conditions are: initial H/sub 2/ pressure-5-40 MPa, discharge chamber volume-1400 cm/sup 3/, current /spl les/1.5 MA, energy stored-1.3 MJ, circuit own frequency-1 kHz. To simulate gas heating in the EDL discharge chamber and to use high speed camera, a diagnostic discharge chamber was made. Based on the arc dynamics study in the diagnostic discharge chamber, temperature and conductivity estimations of the arc channel were carried out for the EDL chamber. Measured pressure 200 MPa and conductivity 230 (/spl Omega//spl times/cm)/sup -1/ correspond to temperatures of (3.3-3.5)/spl times/10/sup 4/ K and of (2.3-2.4)/spl times/10/sup 4/ K for the arcs, burning respectively in copper vapor and in H/sub 2/. Real temperature seems to lie between these two values. Since the pressure equilibrium in the volume was reached, acoustic oscillations may be used to evaluate gas temperature. Moving arcs cause shock waves registered by pressure transducers, placed along discharge length, and by high speed camera. Arc-to-gas energy transfer efficiency rises along with initial H/sub 2/ pressure increase and reaches 90% for 40 MPa. Both shock wave propagation and arc radiation absorption contribute to this rise.</description><subject>Cameras</subject><subject>Circuit simulation</subject><subject>Circuit testing</subject><subject>Conductivity</subject><subject>Frequency</subject><subject>Heat transfer</subject><subject>Hydrogen</subject><subject>Resistance heating</subject><subject>Shock waves</subject><subject>Temperature</subject><issn>0730-9244</issn><issn>2576-7208</issn><isbn>0780339908</isbn><isbn>9780780339903</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jr0OgjAURm_8ScSfF3DqC4C3FCgdjdE4aKLRnVS8QA2CKRjj22uig5NnOcP5hg9gytHjHNVst5kftnOPKyW9CEMehR1w_FBGrvQx7sIQZYxCKIVxDxyUAl3lB8EAJk1zwTdByIWvHNivn2db51SxgnRrqpyZirUFsbNp0kLbnNhb1xNZVmfsVj_IZveSUUlpa036Myv1vUoLsmPoZ7psaPL1CKar5XGxdg0RJTdrrto-k89p8Te-AIHmQxM</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Rutberg, Ph.G.</creator><creator>Bogomaz, A.A.</creator><creator>Budin, A.V.</creator><creator>Kolikov, V.A.</creator><creator>Kuprin, A.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Hydrogen heating in the discharge chamber of powerful electric discharge launcher</title><author>Rutberg, Ph.G. ; Bogomaz, A.A. ; Budin, A.V. ; Kolikov, V.A. ; Kuprin, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_6051653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Cameras</topic><topic>Circuit simulation</topic><topic>Circuit testing</topic><topic>Conductivity</topic><topic>Frequency</topic><topic>Heat transfer</topic><topic>Hydrogen</topic><topic>Resistance heating</topic><topic>Shock waves</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Rutberg, Ph.G.</creatorcontrib><creatorcontrib>Bogomaz, A.A.</creatorcontrib><creatorcontrib>Budin, A.V.</creatorcontrib><creatorcontrib>Kolikov, V.A.</creatorcontrib><creatorcontrib>Kuprin, A.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rutberg, Ph.G.</au><au>Bogomaz, A.A.</au><au>Budin, A.V.</au><au>Kolikov, V.A.</au><au>Kuprin, A.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hydrogen heating in the discharge chamber of powerful electric discharge launcher</atitle><btitle>IEEE Conference Record - Abstracts. 1997 IEEE International Conference on Plasma Science</btitle><stitle>PLASMA</stitle><date>1997</date><risdate>1997</risdate><spage>318</spage><pages>318-</pages><issn>0730-9244</issn><eissn>2576-7208</eissn><isbn>0780339908</isbn><isbn>9780780339903</isbn><abstract>Summary form only given, as follows. Results of the discharge chamber of an electric discharge launcher testing, aiming at a heat transfer study is presented. Test conditions are: initial H/sub 2/ pressure-5-40 MPa, discharge chamber volume-1400 cm/sup 3/, current /spl les/1.5 MA, energy stored-1.3 MJ, circuit own frequency-1 kHz. To simulate gas heating in the EDL discharge chamber and to use high speed camera, a diagnostic discharge chamber was made. Based on the arc dynamics study in the diagnostic discharge chamber, temperature and conductivity estimations of the arc channel were carried out for the EDL chamber. Measured pressure 200 MPa and conductivity 230 (/spl Omega//spl times/cm)/sup -1/ correspond to temperatures of (3.3-3.5)/spl times/10/sup 4/ K and of (2.3-2.4)/spl times/10/sup 4/ K for the arcs, burning respectively in copper vapor and in H/sub 2/. Real temperature seems to lie between these two values. Since the pressure equilibrium in the volume was reached, acoustic oscillations may be used to evaluate gas temperature. Moving arcs cause shock waves registered by pressure transducers, placed along discharge length, and by high speed camera. Arc-to-gas energy transfer efficiency rises along with initial H/sub 2/ pressure increase and reaches 90% for 40 MPa. Both shock wave propagation and arc radiation absorption contribute to this rise.</abstract><pub>IEEE</pub><doi>10.1109/PLASMA.1997.605165</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0730-9244 |
ispartof | IEEE Conference Record - Abstracts. 1997 IEEE International Conference on Plasma Science, 1997, p.318 |
issn | 0730-9244 2576-7208 |
language | eng |
recordid | cdi_ieee_primary_605165 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cameras Circuit simulation Circuit testing Conductivity Frequency Heat transfer Hydrogen Resistance heating Shock waves Temperature |
title | Hydrogen heating in the discharge chamber of powerful electric discharge launcher |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hydrogen%20heating%20in%20the%20discharge%20chamber%20of%20powerful%20electric%20discharge%20launcher&rft.btitle=IEEE%20Conference%20Record%20-%20Abstracts.%201997%20IEEE%20International%20Conference%20on%20Plasma%20Science&rft.au=Rutberg,%20Ph.G.&rft.date=1997&rft.spage=318&rft.pages=318-&rft.issn=0730-9244&rft.eissn=2576-7208&rft.isbn=0780339908&rft.isbn_list=9780780339903&rft_id=info:doi/10.1109/PLASMA.1997.605165&rft_dat=%3Cieee_6IE%3E605165%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=605165&rfr_iscdi=true |