Urban building damage detection from very high resolution imagery by One-Class SVM and shadow information

This paper proposed a method that uses shadow change information in bi-temporal images to improve accuracy of urban building damage detection. The initial building damage detection was conducted by object-based bitemporal classification using One-Class Support Vector Machine (OCSVM). The shadow chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Peijun Li, Benqin Song, Haiqing Xu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1412
container_issue
container_start_page 1409
container_title
container_volume
creator Peijun Li
Benqin Song
Haiqing Xu
description This paper proposed a method that uses shadow change information in bi-temporal images to improve accuracy of urban building damage detection. The initial building damage detection was conducted by object-based bitemporal classification using One-Class Support Vector Machine (OCSVM). The shadow changes extracted from the images were then used to refine the results produced in previous step. The experimental results using bitemporal Quickbird images acquired in Dujiangyan, Sichuan of China showed the proposed method significantly improved the detection accuracy. In particular, the commission error of the building damage was significantly reduced. Further work is required to make more sophisticated rule sets to obtain better results.
doi_str_mv 10.1109/IGARSS.2011.6049330
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6049330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6049330</ieee_id><sourcerecordid>6049330</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1f012b6c1a2c720d11c6996fd0f9f10a641c31a9a88c694ce6f9c56aaf9a58be3</originalsourceid><addsrcrecordid>eNo1kN1OwkAQhde_RESegJt9geJMt912LwlRJMGQiBjvyHR_YE1pzS5qeHuL4rmZ5Hwnk5PD2BBhhAjqbjYdPy-XoxQQRxIyJQScsYEqSszyokCAXJ6zXoq5SAoAccFu_oF4uzwBqZS8ZoMY36GTlApR9ZhfhYoaXn362vhmww3taGO5sXur975tuAvtjn_ZcOBbv9nyYGNbf_4Sf0x2fnXgi8Ymk5pi5MvXJ06N4XFLpv3mvnFt2NExf8uuHNXRDk63z1YP9y-Tx2S-mM4m43niscj3CTrAtJIaKdVFCgZRH5s7A045BJIZaoGkqCw7kGkrndK5JHKK8rKyos-Gf3-9tXb9Ebqa4bA-rSZ-ALFsXiQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Urban building damage detection from very high resolution imagery by One-Class SVM and shadow information</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Peijun Li ; Benqin Song ; Haiqing Xu</creator><creatorcontrib>Peijun Li ; Benqin Song ; Haiqing Xu</creatorcontrib><description>This paper proposed a method that uses shadow change information in bi-temporal images to improve accuracy of urban building damage detection. The initial building damage detection was conducted by object-based bitemporal classification using One-Class Support Vector Machine (OCSVM). The shadow changes extracted from the images were then used to refine the results produced in previous step. The experimental results using bitemporal Quickbird images acquired in Dujiangyan, Sichuan of China showed the proposed method significantly improved the detection accuracy. In particular, the commission error of the building damage was significantly reduced. Further work is required to make more sophisticated rule sets to obtain better results.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 145771003X</identifier><identifier>ISBN: 9781457710032</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781457710056</identifier><identifier>EISBN: 9781457710049</identifier><identifier>EISBN: 1457710056</identifier><identifier>EISBN: 1457710048</identifier><identifier>DOI: 10.1109/IGARSS.2011.6049330</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; building ; Buildings ; change detection ; damage assessment ; Earthquakes ; Image resolution ; Image segmentation ; One-Class SVM ; Remote sensing ; Support vector machines ; very high resolution</subject><ispartof>2011 IEEE International Geoscience and Remote Sensing Symposium, 2011, p.1409-1412</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6049330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6049330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peijun Li</creatorcontrib><creatorcontrib>Benqin Song</creatorcontrib><creatorcontrib>Haiqing Xu</creatorcontrib><title>Urban building damage detection from very high resolution imagery by One-Class SVM and shadow information</title><title>2011 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>This paper proposed a method that uses shadow change information in bi-temporal images to improve accuracy of urban building damage detection. The initial building damage detection was conducted by object-based bitemporal classification using One-Class Support Vector Machine (OCSVM). The shadow changes extracted from the images were then used to refine the results produced in previous step. The experimental results using bitemporal Quickbird images acquired in Dujiangyan, Sichuan of China showed the proposed method significantly improved the detection accuracy. In particular, the commission error of the building damage was significantly reduced. Further work is required to make more sophisticated rule sets to obtain better results.</description><subject>Accuracy</subject><subject>building</subject><subject>Buildings</subject><subject>change detection</subject><subject>damage assessment</subject><subject>Earthquakes</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>One-Class SVM</subject><subject>Remote sensing</subject><subject>Support vector machines</subject><subject>very high resolution</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>145771003X</isbn><isbn>9781457710032</isbn><isbn>9781457710056</isbn><isbn>9781457710049</isbn><isbn>1457710056</isbn><isbn>1457710048</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kN1OwkAQhde_RESegJt9geJMt912LwlRJMGQiBjvyHR_YE1pzS5qeHuL4rmZ5Hwnk5PD2BBhhAjqbjYdPy-XoxQQRxIyJQScsYEqSszyokCAXJ6zXoq5SAoAccFu_oF4uzwBqZS8ZoMY36GTlApR9ZhfhYoaXn362vhmww3taGO5sXur975tuAvtjn_ZcOBbv9nyYGNbf_4Sf0x2fnXgi8Ymk5pi5MvXJ06N4XFLpv3mvnFt2NExf8uuHNXRDk63z1YP9y-Tx2S-mM4m43niscj3CTrAtJIaKdVFCgZRH5s7A045BJIZaoGkqCw7kGkrndK5JHKK8rKyos-Gf3-9tXb9Ebqa4bA-rSZ-ALFsXiQ</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Peijun Li</creator><creator>Benqin Song</creator><creator>Haiqing Xu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201107</creationdate><title>Urban building damage detection from very high resolution imagery by One-Class SVM and shadow information</title><author>Peijun Li ; Benqin Song ; Haiqing Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1f012b6c1a2c720d11c6996fd0f9f10a641c31a9a88c694ce6f9c56aaf9a58be3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>building</topic><topic>Buildings</topic><topic>change detection</topic><topic>damage assessment</topic><topic>Earthquakes</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>One-Class SVM</topic><topic>Remote sensing</topic><topic>Support vector machines</topic><topic>very high resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Peijun Li</creatorcontrib><creatorcontrib>Benqin Song</creatorcontrib><creatorcontrib>Haiqing Xu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peijun Li</au><au>Benqin Song</au><au>Haiqing Xu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Urban building damage detection from very high resolution imagery by One-Class SVM and shadow information</atitle><btitle>2011 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2011-07</date><risdate>2011</risdate><spage>1409</spage><epage>1412</epage><pages>1409-1412</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>145771003X</isbn><isbn>9781457710032</isbn><eisbn>9781457710056</eisbn><eisbn>9781457710049</eisbn><eisbn>1457710056</eisbn><eisbn>1457710048</eisbn><abstract>This paper proposed a method that uses shadow change information in bi-temporal images to improve accuracy of urban building damage detection. The initial building damage detection was conducted by object-based bitemporal classification using One-Class Support Vector Machine (OCSVM). The shadow changes extracted from the images were then used to refine the results produced in previous step. The experimental results using bitemporal Quickbird images acquired in Dujiangyan, Sichuan of China showed the proposed method significantly improved the detection accuracy. In particular, the commission error of the building damage was significantly reduced. Further work is required to make more sophisticated rule sets to obtain better results.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2011.6049330</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2011 IEEE International Geoscience and Remote Sensing Symposium, 2011, p.1409-1412
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_6049330
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
building
Buildings
change detection
damage assessment
Earthquakes
Image resolution
Image segmentation
One-Class SVM
Remote sensing
Support vector machines
very high resolution
title Urban building damage detection from very high resolution imagery by One-Class SVM and shadow information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Urban%20building%20damage%20detection%20from%20very%20high%20resolution%20imagery%20by%20One-Class%20SVM%20and%20shadow%20information&rft.btitle=2011%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Peijun%20Li&rft.date=2011-07&rft.spage=1409&rft.epage=1412&rft.pages=1409-1412&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=145771003X&rft.isbn_list=9781457710032&rft_id=info:doi/10.1109/IGARSS.2011.6049330&rft_dat=%3Cieee_6IE%3E6049330%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457710056&rft.eisbn_list=9781457710049&rft.eisbn_list=1457710056&rft.eisbn_list=1457710048&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6049330&rfr_iscdi=true